Report

Annette Island Preliminary Assessment

Contract No. DTCG87-99-D-6XA018
Task Order 1
USCG Project No. 17-J6124

Prepared for

U.S. Coast Guard

June 2000

Prepared By

CH2MHILL

301 West Northern Lights Boulevard, Suite 601 Anchorage, Alaska 99503-2662 (907) 278-2551

Contents

Sect	tion	Page
Abb	oreviations	vii
1	Introduction	1-1
	1.1 Project Description	
	1.2 Purpose, Objectives, and Scope of Work	
2	Environmental Setting	2-1
	2.1 Climate	
	2.2 Topography	2-3
	2.3 Geology	
	2.4 Wildlife	2-3
	2.5 Cultural Resources	2-3
3	Sampling Activities	
	3.1 Decontamination	
	3.2 Quality Assurance/Quality Control	
	3.3 Field Screening Results	
	3.4 Analytical Results	
	3.4.1 Soil/Sediment Samples	
	3.4.2 Paint Chip Samples	3-6
4	Survey	4-1
5	PA Activities and Results	5-1
	5.1 Site 33B, Former USCG Storage Area	5-5
	5.1.1 Site Description	5-5
	5.1.2 Investigation History	5-5
	5.1.3 PA Activities and Results	5-5
	5.2 Site 40, Pipeline Oil/Water Separators	5-11
	5.2.1 Site Description	5-11
	5.2.2 Investigation History	5-11
	5.2.3 PA Activities and Results	5-11
	5.3 Site 44, USCG Housing	
	5.3.1 Site Description	
	5.3.2 Investigation History	5-14
	5.3.3 PA Activities and Results	
	5.4 Site 45A, USCG Seaplane Base	
	5.4.1 Site Description	
	5.4.2 Investigation History	
	5.4.2 DA Activities and Desults	5_12

	5.5 Site 46, USCG Fire Station/Post Exchange	5-20
	5.5.1 Site Description	5-20
	5.5.2 Investigation History	5-20
	5.5.3 PA Activities and Results	5-20
	5.6 Site 47A, USCG Taxiways and Parking Circles	5-24
	5.6.1 Site Description	5-24
	5.6.2 Investigation History	5-24
	5.6.3 PA Activities and Results	5-24
	5.7 Site 68, USCG Water Treatment Plant	5-28
	5.7.1 Site Description	5-28
	5.7.2 Investigation History	5-28
	5.7.3 PA Activities and Results	5-28
	5.8 Site 69A, USCG Quarters-POL	5-30
	5.8.1 Site Description	5-30
	5.8.2 Investigation History	5-30
	5.8.3 PA Activities and Results	5-32
	5.9 Site 71A, USCG Garage-Asbestos	5-36
	5.9.1 Site Description	5-36
	5.9.2 Investigation History	
	5.9.3 PA Activities and Results	5-36
	5.10 Site 72, Hangar Boiler Building	5-41
	5.10.1 Site Description	5-41
	5.10.2 Investigation History	
	5.10.3 PA Activities and Results	5-42
	5.11 Site 73, Boiler Building AST	5-44
	5.11.1 Site Description	5-44
	5.11.2 Investigation History	5-44
	5.11.3 PA Activities and Results	5-44
	5.12 Site 74, USCG ASTs	5-45
	5.12.1 Site Description	5-45
	5.1.2 Investigation History	
	5.12.3 PA Activities and Results	5-45
	5.13 Site 75, Hangar	5-49
	5.13.1 Site Description	5-49
	5.13.2 Investigation History	5-49
	5.13.3 PA Activities and Results	5-55
6	Conclusions	6-1
7	Works Cited	7-1
App	pendix	
A	Laboratory Analytical Data	
В	GPS Survey	
C	Figures and Table from Annette Island Brownfields Investigation	

Table

1-1	USCG Annette Island Site Numbers, Names, and Histories	1-2
3-1	USCG Soil Sample Summary for 13 Annette Island PA Sites	
3-2	Soil Sample Field Screening Results	
3-3	Analytical Results for Preliminary Assessment Samples	
Figu	re	
1-1	Major Site Structures and Features	1-3
1-2	Detail of Major Site Structures and Features	1-4
2-1	Location and Vicinity Map	2-2
5-1	Site 33B USCG Storage Area	
5-2	Site 40 Oil/Water Separator, Site 44 Housing-Site 45A Seaplane Base,	
	Site 46 Fire Station/Post Exchange, Site 47A Taxiway/Parking Circle	5-3
5-3	Site 68 Water Treatment Plant, Site 69A USCG Quarters-POL, Site 71A Garage-	
	Asbestos, Site 72 Hangar Boiler Building, Site 73 Boiler Building AST,	
	Site 74 USCG ASTs, Site 75 Hangar	5-4
5-4	USCG Ammo. Storage Area	
5-5	Airfield and Garrison Site Plot Plan	
5-6	Seaplane Ramp Road Analytical Results	
5-7	USCG Site Plan	
5-8	Site Plan, Annette Island PCB Removal	

ANC/LKB763.DOC/003670012 V

VI ANC/LKB763.DOC/003670012

Abbreviations

ACM asbestos-containing material

ADEC Alaska Department of Environmental Conservation

AST aboveground storage tank
BIA Bureau of Indian Affairs

BTEX benzene, toluene, ethylbenzene, and xylenes

C3 Coordinated Comprehensive Cleanup

COE U.S. Army Corps of Engineers

DRO diesel-range organics

ECI environmental compliance investigation

E&E Ecology and Environment, Inc.

EPA U.S. Environmental Protection Agency

FAA Federal Aviation Administration

FSP field sampling plan

GPS global positioning system
GRO gasoline-range organics

HLA Harding Lawson Associates

LRI limited remedial investigation

μg/kg micrograms per kilogram

μg/L micrograms per liter

mg/kg milligrams per kilogram

MIC Metlakatla Indian Community

MOU Memorandum of Understanding

OBS oil burning specifications

OTF on-the-fly (surveying)

PA preliminary assessment

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl PID photoionization detector

ppm parts per million

ANC/LKB763.DOC/003670012 VII

NA not analyzed ND not detected

QA quality assurance

QAPP quality assurance project plan

QC quality control

RI remedial investigation RRO residual-range organics

SVOC semivolatile organic compound
TPH total petroleum hydrocarbons

USCG U.S. Coast Guard

UST underground storage tank
VOC volatile organic compound

VIII ANC/LKB763.DOC/003670012

Introduction

A preliminary assessment (PA) was completed by CH2M HILL for the U.S. Coast Guard (USCG) at 13 sites on Annette Island in southeast Alaska. CH2M HILL was contracted by the USCG to complete the PA under Contract No. DTCG87-99-D-6XA018, Task Order 1, USCG Project No. 17-J6124. In accordance with the June 1999 Coordinated Comprehensive Cleanup (C3) Plan for Annette Island prepared by the Annette Island Memorandum of Understanding (MOU) Work Group and the USCG, the USCG has taken the lead role to coordinate information gathering and planning for investigations and cleanup at 13 of the potentially contaminated sites identified on Annette Island to date by several federal agencies and the Metlakatla Indian Community (MIC). CH2M HILL completed the PA in accordance with the *Annette Island Preliminary Assessment Work Plan* prepared by CH2M HILL. The work plan included a sampling and analysis plan, quality assurance project plan (QAPP), and site health and safety plan.

Results of the PA completed for the 13 sites are presented in this report. Components of this report include a discussion of historical information available for each site and results of the site visit completed November 30 through December 2, 1999. The site visit included observations of the 13 sites and surrounding areas; collection of shallow subsurface soil samples, one sediment sample, and paint chip samples for laboratory analysis; and recording of global positioning system (GPS) coordinates for the sampling locations and other pertinent site features. Recommendations for future action at the 13 sites are presented in a separate technical memorandum completed for this project.

1.1 Project Description

In August 1997 the USCG, in conjunction with the Federal Aviation Administration (FAA), Bureau of Indian Affairs (BIA), and U.S. Army Corps of Engineers (COE), compiled the *Annette Island Environmental Restoration Issues* document. This document outlined the histories of the federal agencies at each of 93 sites on Annette Island and detailed the current state of environmental concerns at each site. An MOU work group was formed with representatives from the MIC, USCG, FAA, BIA, and COE. Under terms of the work group, each agency has taken a role of "primary lead agency" for certain sites. The USCG is currently the lead agency for 13 of the 93 sites. These sites are listed and described in Table 1-1. Figures 1-1 and 1-2 show the general locations of the 13 USCG sites among the 93 sites identified in the *Annette Island Environmental Restoration Issues* document. Additional site figures, maps, and photographs for each USCG site are included in Section 5.

Previous record reviews, interviews, and field activities have been conducted for the 13 sites. The information obtained from those efforts indicated potential areas of environmental concern at the sites. Documents containing background information on Annette Island sites that were reviewed during this PA are listed below.

ANC/LKB763.DOC/003670012 1-1

TABLE 1-1USCG Annette Island Site Numbers, Names, and Histories *USCG Annette Island PA*

Site Number	Site Name	Site History			
33B	Former USCG Storage Area	Leased from the FAA by the USCG			
40	Pipeline Oil/Water Separators	Used by the Navy and USCG during WWII			
44	USCG Housing	Owned and operated by the USCG, property leased from FAA and the Metlakatla Indian Community (MIC)			
45A	USCG Seaplane Base	Owned and operated by the USCG, property leased from FAA/MIC			
46	USCG Fire Station/Post Exchange	Owned and operated by the USCG, property leased from FAA/MIC			
47A	USCG Taxiways and Parking Circles	Owned and operated by the USCG, property leased from FAA/MIC			
68	USCG Water Treatment Plant	Owned and operated by the USCG, property leased from FAA/MIC			
69A	USCG Quarters-POL	Owned and operated by the USCG, property leased from FAA/MIC			
71A	USCG Garage-Asbestos	Owned and operated by the USCG, property leased from FAA/MIC			
72	Hangar Boiler Building	Owned and operated by the USCG, property leased from FAA/MIC			
73	Boiler Building AST	Owned and operated by the USCG, property leased from FAA/MIC			
74	USCG ASTs	Owned and operated by the USCG, property leased from FAA/MIC			
75	Hangar	Owned and operated by the USCG, property leased from FAA/MIC			

1-2 ANC/LKB763.DOC/003670012

Source: Coordinated Comprehensive Cleanup (C3) Plan, Annette Island, Alaska. Prepared by the Annette Island MOU Work Group and the USCG. June 1999.

Source: Coordinated Comprehensive Cleanup (C3) Plan, Annette Island, Alaska. Prepared by the Annette Island MOU Work Group and the USCG. June 1999.

- Removal Action and Remedial Investigation, Annette Island, Alaska, Final Work Plan, Jacobs Engineering Group Inc., June 1999
- Coordinated Comprehensive Cleanup Plan, Annette Island, Alaska, Annette Island Working Group and USCG, June 1999
- Final Remedial Action Report, Annette Island PCB Removal, Metlakatla, Alaska, OHM Remediation Services Corporation, September, 1998
- Final Report, Task Order #18, PCB Transformer Removal, Former USCG Airstation, Annette Island. Carson Dorn, January 12, 1999
- *Metlakatla Peninsula Limited Remedial Investigation,* Ridolfi Engineers and Associates, Inc. (Ridolfi), prepared for the Metlakatla Indian Community, December 1998
- Hazardous and Toxic Waste Report, Phase II Field Investigation, Annette Island Landing Field, Annette Island, Alaska, Ecology and Environment, Inc. (E&E), March 1990
- Preliminary Assessment, Metlakatla Peninsula, Ridolfi, October 1996
- Annette Island Brownfields Site Assessment Report, E&E, June 1999
- Remedial Investigation Report, Annette Island Remedial Investigation, Annette Island, Alaska, DOWL/Ogden Joint Venture, August 1999
- Site Assessment Report, U.S. Coast Guard Former Facilities, Annette Island, Alaska, Harding Lawson Associates (HLA)/Wilder JV, July 30, 1999
- Annette Island Environmental Restoration Issues, FAA, BIA, COE, USCG, August 1997
- Metlakatla Peninsula Asbestos Inventory and Abatement Plan, Ridolfi, June 30, 1998
- Metlakatla Peninsula Lead-Based Paint Investigation, Ridolfi, June 30, 1998
- Metlakatla Peninsula Asbestos Abatement Phase I Closure Plan (Draft), Ridolfi, July 30, 1999
- Defense Environmental Restoration Account Inventory Report for Annette Island Landing Field, Alaska, Sverdrup & Parcel and Associates, Inc., January 1986
- Trip Report, FAA Nonhazardous and Hazardous Materials Removal/Disposal Project, Annette Island FAA Station, Annette Island, Alaska, Ecology and Environment, Inc., June 1995
- Site Cleanup and Investigation Report, Volume 1, Expanded Site Investigation/Interim Cleanup, Annette Island FAA Station, Annette Island, Alaska, E&E, May 1995
- Trip Report, FAA Hazardous Waste Removal/Disposal Project, Annette Island FAA Station, Annette Island, Alaska, E&E, February 1993
- Environmental Compliance Investigation Report, Annette Island FAA Station, Annette Island, Alaska, E&E, May 1992
- Field Investigation Report, Phase II Field Investigation, Former DOD Sites, Annette Island Landing Field, Annette Island, Alaska, E&E, November 1989

ANC/LKB763.DOC/003670012 1-5

• Overview of Environmental and Hydrogeologic Conditions at Nine Coastal and Island Sites in South-Central and Southeast Alaska, USGS Open-File Report 95-404, Eppie V. Hogan, 1995

1.2 Purpose, Objectives, and Scope of Work

The goal of this project was to complete a PA of the 13 sites for which the USCG is the lead agency for the following purposes:

- Identify areas of actual or potential contamination from past practices and site use with particular emphasis on the following:
 - Petroleum contamination-Determine the potential location of past spills of petroleum products and evaluate the potential current level of soil contamination.
 - Polychlorinated biphenyls (PCBs)–Assess the possible locations of PCB contamination and PCB-containing materials, such as abandoned electrical transformers.
 - Solid waste-In addition to assessing the locations of abandoned transformers, assess
 the possible locations of fuel tanks, fuel pipelines, and abandoned drums that may
 be above or below ground at each site.
 - History-Develop a history for each site as a summary of past documented activities.
- Develop recommendations and preliminary cost estimates for further field investigation or remediation efforts to address identified areas of environmental concern.

Information gathered during the PA and results for each of the 13 sites are presented in the following sections. The information includes a description of the general environmental setting of Annette Island presented in Section 2, a summary of field activities completed during the PA site visit in Sections 3 and 4, and results of the PA for each site presented in Section 5. The results for each site include a summary of past investigations and other known historical information about the site, maps and photographs of each site, and results of updated information obtained during the site visit, including analytical data for samples that were collected. Conclusions for each site, based on information obtained during the PA, are presented in Section 6. Recommendations for future investigation, remediation, or site closure for the sites have been developed and submitted to the USCG in a separate document.

1-6 ANC/LKB763.DOC/003670012

Environmental Setting

Annette Island is about 700 miles northwest of Seattle, Washington, and 15 miles south of Ketchikan in southeast Alaska (Figure 2-1). The island is the home of the Metlakatla Indian Community. The 200-square-mile island was declared an Indian Land Reserve in 1891 and is the only reservation in the state of Alaska. The Annette Island PA project sites are in an area on the southern portion of the island that encompasses about 16.7 square miles (10,700 acres). The legal description for the project sites encompasses all or portions of the following:

- Township 78 South, Range 92 East, Sections 20, 21, 28-34
- Township 79 South, Range 91 East, Sections 12 and 13
- Township 79 South, Range 92 East, Sections 3-10 and 16-20

The following sections describe the environmental setting of the project sites.

2.1 Climate

The Metlakatla Peninsula lies in the temperate maritime coastal climate typical of southeastern Alaska. Relatively warm winters, cool summers, and heavy precipitation characterize this area. Average winter temperatures range from 30°F to 45°F, and summer temperatures range from 42°F to 62°F. Annette Island Weather Bureau records indicate an average annual precipitation of 103 inches, which includes an average snowfall of 12 inches or less. Low cloud cover, including foggy conditions and poor visibility, is present approximately 70 percent of the year. Recorded wind information indicates that the mean wind speed is approximately 12 miles per hour, and winds are predominantly from the south-southeast. Higher winds can occur with winter storms; sustained winds above 30 miles per hour are common in January and February. Storms with winds over 100 miles per hour occur on occasion (Ridolfi, 1996).

ANC/LKB763.DOC/003670012 2-1

Source: Coordinated Comprehensive Cleanup (C3) Plan, Annette Island, Alaska. Prepared by the Annette Island MOU Work Group and the USCG. June 1999.

2.2 Topography

The Metlakatla Peninsula is relatively flat and mostly between sea level and 100 feet above mean sea level. Numerous lakes, marshes, bogs, and other typical lowland features are found throughout the peninsula. The flat grades and numerous lakes were formed in part by glacial processes during the Pleistocene epoch; the last glacial retreat was nearly 10,000 years ago. Except for Canoe Cove, the Village Point, and Tamgas Harbor, most of the coastline is irregular and rocky (Ridolfi, 1996).

2.3 Geology

Annette Island is in the northern region of the Cordilleran mountain range, a mountain system that extends along the western coastline of North America from southern California to the Alaska Peninsula. The bedrock underlying Annette Island consists of igneous and metamorphic rocks of late Paleozoic to early Mesozoic age.

Organic and alluvial sedimentary deposits ranging in depth from 4 to 25 feet dominate the surface geology of the peninsula. These deposits include emergent shoreline, modern shore and delta deposits, alluvium, muskeg, and other organic deposits, as well as artificial fill brought in to allow construction of roads and other features. The surface soils generally consist of poorly drained, sandy gravels mixed with clays and decomposed organic matter (Ridolfi, 1996).

2.4 Wildlife

Wildlife identified on the Metlakatla Peninsula includes wolves, beaver, Sitka black-tailed deer, and red squirrels and other small mammals. Avian species include grouse, ptarmigan, bald eagle, blue heron, and numerous species of waterfowl. The only federally listed endangered species present is the humpback whale. Bald eagles nest in snags and other high locations along the southeastern Alaskan coastline. Humpback whales typically pass through the waters near Annette Island as they migrate to and from summer feeding and winter breeding grounds (Ridolfi, 1996). Sockeye and chinook salmon migrate through the area.

2.5 Cultural Resources

On the basis of information from the Alaska Heritage Resources Survey included in previous Annette Island reports, there are no cultural resources that have been formally identified and recorded for the area encompassed by the former Annette Island airbase on the Metlakatla Peninsula (Ridolfi, 1996). However, culturally important sites and resources for the MIC may exist within the project sites.

ANC/LKB763.DOC/003670012 2-3

2-4 ANC/LKB763.DOC/003670012

Sampling Activities

Field sampling during the PA was conducted in accordance with the field sampling plan (FSP) and QAPP contained in the project work plan. Sampling activities consisted of collecting shallow subsurface soil samples, paint chip samples, and one sediment sample. Samples were collected to fill existing data gaps by evaluating whether contamination exists in potential areas of concern. Samples were collected from each site based on visual observations and direction from the onsite USCG technical representative.

Before the field sampling was conducted, a Metlakatla Power and Light line worker reviewed maps showing the 13 sites and potential sampling locations. The line worker confirmed that no active underground utilities that could be affected by the planned PA fieldwork were at the sites. All sampling areas were cleared by Metlakatla Power and Light for collecting surface and shallow subsurface (less than 2-foot depth) soil and sediment samples.

No waste oil or abandoned drum contents were encountered during the fieldwork. Therefore, no samples were collected for oil burning suite analyses.

All shallow subsurface soil samples were collected by first manually advancing a shovel to an approximate 12- to 18-inch depth to open an excavation. Soil samples were then collected with dedicated stainless steel spoons by scraping farther into the bottom of the exposed hole. The single sediment sample collected at Site 33B was collected from a zero- to 4-inch horizon.

All paint chip samples were collected by scraping paint off an interior building wall or structural beam and into a 1-quart resealable plastic bag for shipment to the laboratory. Paint scraping was performed with dedicated stainless steel spoons. In all cases, existing paint was observed peeling on sections of the wall surfaces; samples were collected by scraping the peeling paint into the sample bag.

In accordance with the FSP, soil samples that were collected for analyses of benzene, toluene, ethylbenzene, and xylenes (BTEX) and gasoline-range organics (GRO) were first removed from the sampler, immediately placed in an appropriate sample container, and immersed in methanol. The remaining soil was placed into a resealable bag and composited before sample containers were filled. Remaining soil samples that were not packaged for shipment to the laboratory remained sealed in their respective bags, were heated for approximately 15 minutes, and then field screened with a photoionization detector (PID). All sample containers destined for the laboratory were placed in a cooler and maintained at temperatures of about 4°C for shipment to the laboratory under chain-of-custody procedures. These sampling efforts followed U.S. Environmental Protection Agency (EPA) and Alaska Department of Environmental Conservation (ADEC) guidelines for quality assurance (QA) and quality control (QC) that were described in the QAPP.

Total sample quantities submitted for offsite analysis and the analytical methods are summarized in Table 3-1. Samples were submitted to Analytica Alaska, Inc., for analyses.

ANC/LKB763.DOC/003670012 3-1

TABLE 3-1USCG Soil Sample Summary for 13 Annette Island PA Sites USCG Annette Island PA

Sample Type	Method	Field Samples	Duplicate Samples	Trip Blank	Equipment Blank	Total
Soil Samples						
DRO/RRO	AK102/103	7	1	0	0	8
GRO/BTEX	AK101/8021	7	1	1	0	9
Lead	EPA 6010B	3	1	0	0	4
PCB	EPA 8082	1	0	0	0	1
Paint Chip Sam	ples					
Lead	EPA 6010B	5	1	0	0	6
PCB	EPA 8082	2	1	0	0	3

Notes:

DRO/RRO: Diesel-range organics/residual-range organics

GRO/BTEX: Gasoline-range organics/benzene, toluene, ethylbenzene, and total xylenes

PCB: Polychlorinated biphenyls

EPA: U.S. Environmental Protection Agency

3.1 Decontamination

The objective of decontaminating sampling equipment is to prevent the introduction of contamination into samples from sampling equipment.

All samples were collected with dedicated, pre-cleaned, stainless steel spoons. Spoons were used for the collection of one sample and discarded. Subsequently, no decontamination of sampling equipment was required and an equipment blank was not collected.

3.2 Quality Assurance/Quality Control

Sampling efforts for this project were conducted in accordance with EPA and ADEC guidelines for QA/QC that are described in the project-specific QAPP. The analytical results for 13 soil, sediment, and paint chip samples collected on December 1, 2000 were subjected to a QA/QC review that included the following:

- Chain of Custody
- Holding Time
- Method Blank Review
- Laboratory Duplicate Review
- Surrogate Review
- Spike/Spike Duplicate Review
- Detection Limits

3-2 ANC/LKB763.DOC/003670012

Samples were selectively analyzed for GRO/BTEX, DRO/RRO, PCBs, and total lead. The samples were analyzed by Analytica Alaska, Inc. in Anchorage, Alaska and Broomfield, Colorado.

The level of reporting from Analytica was Level I, which includes sample and method blank results, field QC sample results, and surrogate recoveries. Other quality control data (such as spike recoveries), chromatograms, and quantitation reports were not required in the data deliverable and were not requested. Consequently, results of spike recovery results were not reviewed and calculations from raw data were not verified.

The analytical report also did not include instrument performance check results or calibration data. This data was not required in the Level I deliverable. The laboratory case narrative stated that all acceptance criteria for calibrations, method blanks, surrogates, spikes, and samples were met and that all analyses proceeded normally.

Holding Times

Holding time criteria monitor sample integrity that may be compromised over time. All soil, sediment, and paint chip samples were analyzed within their holding time requirements.

Sample Handling

Proper sample handling and chain-of-custody procedures help monitor the integrity of the samples.

The chain-of-custody and laboratory case narrative were reviewed to determine if any sample handling procedures might affect the integrity of the samples and the quality of the resulting data.

Samples sent to Analytica were shipped in one cooler. The temperature inside the cooler was 4.0° C. This temperature is within the acceptable limits of 4° C +\- 2° C.

Method Blanks

Method blank criteria monitor the existence and magnitude of contamination resulting from sample handling processes and/or instrument carryover.

No analytes of interest were detected above their reporting limit in the method blanks associated with the project samples.

Sensitivity

Sensitivity criteria monitor achievement of method reporting limits.

All samples met their respective method reporting limits.

Surrogate Spike Recovery

Surrogate spike recovery monitors instrument specificity and accuracy.

No discrepancies were noted in which surrogate recovery values were outside the higher or lower acceptance levels.

ANC/LKB763.DOC/003670012 3-3

Field QA/QC

Field QA/QC monitors for sample contamination and overall sampling and analytical precision. Field duplicates were the field QA/QC samples.

Field Duplicates

One field duplicate soil and paint chip samples were collected. This frequency meets the QA/QC minimum requirement of one duplicate sample per 10 field samples collected.

3.3 Field Screening Results

Soil samples collected for laboratory analyses were field screened with a PID by using the headspace technique. Sample material was sealed in a plastic bag and warmed for approximately 15 minutes. The bag was then unsealed enough to insert the PID probe and the maximum reading was recorded. Field screening results are detailed in Table 3-2.

TABLE 3-2Soil Sample Field Screening Results *USCG Annette Island PA*

Site Number	Sample Number	PID Result	_
69A	69A99SL05	1.7	_
69A	69A99SL06	1.4	
74	7499SL09	0.3	
74	7499SL10	0.3	
74	7499SL11	429	
74	7499SL12	8.8	
46	4699SL14	NA	
45A	45A99SL15	0.8	

Notes:

All samples were field screened on December 1, 1999.

All samples collected from 12-18 inches.

All field screening result unit values are ppm (parts per million).

NA: Not analyzed.

3.4 Analytical Results

Test results for diesel-range organics (DRO), residual-range organics (RRO), GRO, BTEX, lead, and PCBs in soil samples and for PCBs and lead in paint chip samples collected during the PA field activities are presented in Table 3-3. Test results are summarized in the following paragraphs. The full laboratory data package is included in Appendix A.

3-4 ANC/LKB763.DOC/003670012

TABLE 3-3Analytical Results for Preliminary Assessment Samples *USCG Annette Island PA*

		EPA 8082	EPA 6010B	AK 103	AK 102	AK 101	EPA 5030/8021: BTEX			
Site Number	Sample Number	РСВ	Lead	RRO	DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes
Soil and	Sediment									
69A	69A99SL05	NA	NA	41	170	ND (2.1)	ND (.021)	ND (.021)	ND (.021)	ND (.021)
69A	69A99SL06	NA	NA	13	7.3	ND (2.0)	ND (.020)	ND (.020)	ND (.020)	ND (.020)
74	7499SL09	NA	13	130	37	ND (3.0)	ND (.030)	ND (.030)	ND (.030)	ND (.030)
74	7499SL10	NA	19	100	34	ND (2.1)	ND (.021)	ND (.021)	ND (.021)	ND (.021)
74	7499SL11	NA	380	ND (8.9)	13,000	1,000	ND (.27)	ND (.27)	1.0	1,000
74	7499SL12	NA	24	570	200	ND (3.4)	ND (.034)	ND (.034)	ND (.034)	ND (.034)
33B	33B99SD13	NA	NA	4,000	1,100	ND (23)	ND (.23)	ND (.23)	ND (.23)	ND (.023)
46	4699SL14	ND (.018)	NA	NA	NA	NA	NA	NA	NA	NA
45A	45A99SL15	NA	NA	23	ND (4.5)	ND (2.1)	ND (.021)	ND (.021)	ND (.021)	ND (.021)
Paint Ch	ip									
75	7599PT01	0.700 (Aroclor 1254)	37,000							
75	7599PT02	NA	6,200							
75	7599PT03	0.850 (Aroclor 1254)	25,000							
75	7599PT04	1.0 (Aroclor 1254)	49,000							
68	6899PT07	NA	21,000							
71A	71A99PT08	NA	490							

Notes:

All samples collected December 1, 1999.

All soil/sediment samples collected from 12-18 inches except 33B99SD13, which was a sediment sample collected from 0-4 inches. All analytical result unit values are mg/kg (dry weight).

NA = Not analyzed

ND() = Not detected (reporting limit)

3.4.1 Soil/Sediment Samples

- DRO was detected in seven of eight samples to a maximum 13,000 milligrams per kilogram (mg/kg).
- RRO was detected in seven of eight samples to a maximum 4,000 mg/kg.
- GRO was detected in one of eight samples at 1,000 mg/kg.
- Benzene was not detected in any samples.
- Total BTEX was detected as ethylbenzene and total xylenes in one of eight samples at a maximum value of 1,000 mg/kg (xylenes).
- PCBs were not detected in the one soil sample analyzed for PCBs.

ANC/LKB763.DOC/003670012 3-5

 Lead was detected in all four soil samples submitted for lead analysis to a maximum 380 mg/kg.

3.4.2 Paint Chip Samples

- Lead was detected in all paint chip samples at concentrations ranging from 490 mg/kg to 49,000 mg/kg.
- PCBs were detected in the three paint chip samples submitted for PCB analysis at concentrations ranging from 0.7 mg/kg to 1 mg/kg.

3-6 ANC/LKB763.DOC/003670012

Survey

Horizontal and vertical positions of soil sample locations and other points of interest were documented by establishing GPS survey coordinates. Additional permanent and recognizable site features were also surveyed to establish local swing-tie measurements to easily establish sampling locations at a later date.

Points were surveyed by using kinematic survey methods. Kinematic (stop and go) surveying involves the establishment of a "base" and "rover" unit that are used in conjunction to acquire survey points. The base receiver is positioned above a known survey benchmark and its coordinates are entered. The field crew may then use the rover unit to establish the desired survey coordinates based on the known position of the base station.

Kinematic surveying uses GPS phase measurements from four or more satellites common to both the base and rover receivers. To achieve centimeter-level precision the survey must first be initialized. On-the-fly (OTF) surveying was the method chosen to survey points for the USCG Annette Island PA. OTF is a precise form of kinematic surveying that requires communication with five or more satellites to maintain initialization and allows for the rapid collection of survey coordinates in the field.

All survey points collected were initialized and the instruments were properly calibrated. The vertical accuracy for all points is within 0.04 foot and the horizontal accuracy is within 0.02 foot. A total of 90 survey points were gathered during field activities. All the points and their respective coordinates are listed in Appendix B.

ANC/LKB763.DOC/003670012 4-1

4-2 ANC/LKB763.DOC/003670012

PA Activities and Results

The following subsections provide a general description; a summary of past investigations, cleanups, and other studies completed; and a description of activities completed at each site evaluated during this PA. The general locations of the 13 sites are shown in Figures 5-1 through 5-3. Additional figures, tables, and photographs that are included for each site show past site conditions, sampling locations and analytical data, and the site conditions, sampling locations, and analytical results from this PA.

ANC/LKB763.DOC/003670012 5-1

Aerial photograph Annette Island used by permission. ©Copyright AeroMap U.S., 1995.

Figure 5-1 Site 33B USCG Storage Area

Aerial photograph Annette Island used by permission. ©Copyright AeroMap U.S., 1995.

Figure 5-2

Aerial photograph Annette Island used by permission. ©Copyright AeroMap U.S., 1995.

Figure 5-3

Site 68 Water Treatment Plant Site 69A USCG Quarters - POL Site 71A Garage - Asbestos Site 72 Hangar Boiler Building Site 73 Boiler Building AST Site 74 USCG ASTs Site 75 Hangar

5.1 Site 33B, Former USCG Storage Area

5.1.1 Site Description

Site 33B is a former USCG storage area situated off of runway B of the former landing field. Runway B is gravel, approximately 6,000 feet in length, and oriented in a northeast to southwest direction. The site was leased by the USCG from the Civil Aeronautics Administration (pre-FAA). The site is shown as "Ammo. Storage Area" on a 1952 USCG map (Figure 5-4). The boundaries of the site are shown on that map as a rectangular area approximately 800 by 1,200 feet, 400 feet off of the NE-SW runway (runway B). The lease area shown in the map includes a taxiway and two parking circles off the south side of runway B. In a 1946 COE plot plan (Figure 5-5) and the *Environmental Restoration Issues* (FAA, 1997), revetments H-38, H-39, and H-40 are shown within the area. Site 33B is also shown in a 1961 FAA real estate data map. Information on the types of activities conducted by the USCG at this site, years of use, and any reported releases of hazardous substances from the site was not found during the file research conducted during this PA. The "Ammo. Storage Area" label on the 1952 USCG map implies the area was used, or intended for use, for storage of ammunition. The Environmental Restoration Issues document describes approximately 200 abandoned drums at revetment H-40. Revetment H-40 was included among several areas around Annette Island where abandoned drums had been observed. The drums were described in the document as abandoned by the U.S. Navy, the U.S. Air Force, and the BIA, the latter of which used tar from 55-gallon drums to pave some of the area roads (FAA, 1997).

5.1.2 Investigation History

According to file information reviewed for this PA, no previous sampling had been conducted within this area before 1999. In summer 1999, contractors for the COE conducted removal actions and a remedial investigation (RI) at several sites on Annette Island, including Site 33B. During that work, abandoned drums at Site 33B were collected and removed, and soil, sediment, surface water, and groundwater samples were collected. Preliminary results from that fieldwork indicate that 8 clean drums and 141 waste drums were removed from the site. The waste drums contained asphalt thought to be left over from runway construction activities during World War II. Preliminary analytical results indicate that analytes exceeding screening criteria used for the RI exist at the site. According to the COE, complete results of the drum removal and RI will be included in a final report due to be completed in mid-2000.

5.1.3 PA Activities and Results

The USCG storage area was observed during the PA site visit to document current conditions. Remains of the three former revetments and several areas surrounding the two gravel parking circles where sampling occurred during the 1999 COE investigation (indicated by stakes and colored flagging with sample ID numbers) were observed. In addition, several junked cars, car parts and other debris, such as junked household appliances, were observed at the revetment H-38 area. 55-gallon drums were also observed in the wetlands off the two parking circles. Recent construction of a wooden target range was observed attached to the remains of revetment H-40, and recently spent shell casings

ANC/LKB763.DOC/003670012 5-5

Figure 5-4

Figure 5-5

were observed scattered on the ground in the vicinity of the target range. Solidified asphalt, presumably from drums that had been abandoned off the side of the parking circling containing revetment H-40, was also observed on the gravel pad and in the adjacent wetlands. Remains of revetment H-39 only included scattered wooden debris. Photographs 1 through 4 show the site conditions at site 33B at the time of the PA site visit.

Sampling at Site 33B was limited during this PA because the site had just been sampled by COE contractors during the drum removal and RI. One sediment sample (33B99SD13) was collected approximately 10 feet from the southern side of the revetment H-40 parking circle, in a vegetated area within the asphalt remains. The sample was analyzed for GRO, DRO, RRO, and BTEX.

Results of the sample collected at Site 33B indicate 1,000 mg/kg of DRO and 4,000 mg/kg of RRO in sediments collected at zero to 4 inches. The sample contained highly organic matter and biogenic activity in the sample matrix may have contributed to the results.

The sediment sample location and the stakes from the 1999 drum removal and RI that were found throughout Site 33B were surveyed, and the information written on labels affixed to the stakes was recorded. The existing groundwater monitoring point observed at revetment H-40 was also surveyed. Other than abandoned drums and the visible asphalt remains at revetment H-40, no other visible signs of past releases of hazardous substances were observed at Site 33B during the PA site visit.

5-8 ANC/LKB763.DOC/003670012

Photograph 1. Revetment H-38 gravel pad. View looking south.

Photograph 2. Remains of storage structure at Revetment H-38. View looking south. Stake with flagging from 1999 RI visible in water (foreground).

Photograph 3. Remains of storage structure and recently built target range at Revetment H-40. View looking south.

Photograph 4. Revetment H-40 gravel pad. View looking south. Sample 33B99SD13 collected off far side of gravel pad.

5.2 Site 40, Pipeline Oil/Water Separators

5.2.1 Site Description

For purposes of this PA, the USCG has defined Site 40 as the oil/water separator vault north of Site 46 (Fire Station/Post Exchange) and adjacent to the Seaplane Ramp Road. Figure 5-6 shows the approximate location of the separator. At this site, remains of an oil/water separator consist of a concrete vault that contains a large tank, metal piping, gauges, and valves.

5.2.2 Investigation History

A discussion and photographs of Site 40 were included in the 1996 PA. No sampling had been performed at this site before 1998, according to record reviews completed for this PA. In 1998, contractors for the COE conducted an RI at seven sites on Annette Island, including the water separator pit at Site 40. Results of the RI are presented in *Remedial Investigation* Report, Annette Island Investigation, Annette Island, Alaska (DOWL/Ogden Joint Venture, 1999). At the time of the RI, the water separator pit was open and full of debris. The debris consisted of rusting metallic items, household goods, and cut logs, which were decaying. An attempt to tap a pipe within the pit revealed open valves and corroded pipe. The entrance and exit points in the separator pit did not contain piping (DOWL/Ogden Joint Venture, 1999). During the RI, a sediment sample was collected from the bottom of the separator pit. The sample was analyzed for GRO, DRO, RRO, BTEX, polycyclic aromatic hydrocarbons (PAHs), and lead. GRO and DRO were not detected in the sample, and RRO was reported at 6,900 mg/kg. The RI report noted that the DRO was not detected when a detection limit of less than 950 mg/kg was used because of the dilution used in the sample. The report states that because of the results at the other sampling locations for the RI, the separator pit location would also be expected to have elevated levels of DRO. BTEX and PAHs were not detected, and lead was reported at 340 mg/kg (DOWL/Ogden Joint Venture, 1999). The location of the water separator pit and results of the sampling (sample SR01) as presented in the 1999 RI Report are shown in Figure 5-6.

5.2.3 PA Activities and Results

The oil/water separator was observed during the PA site visit. The cement vault was open, and standing water was observed in the bottom of the pit. The remains of a tank and valves and the decaying logs reported during the 1998 RI were seen. The floor of the separator pit was confirmed to be concrete; however, the water in the pit prevented a visual inspection of the concrete floor conditions. The pit has been open for many years, and there is no record that it has been emptied in the past. The relatively low water level observed in the pit during the PA indicates that the pit is not water-tight. Because the separator had already been sampled during the 1998 RI, no additional samples were collected during the PA site visit. Photographs 5 and 6 show the separator pit at the time of the PA site visit. The location of the pit was surveyed, and visual observations around the pit area did not detect any additional potential sources of contamination associated with this site.

Source: DOWL/Ogden Joint Venture, Remedial Investigation Report, Annette Island Remedial Investigation, Annette Island, Alaska, August 1999.

Figure 5-6 Seaplane Ramp Road Analytical Results

Photograph 5. Interior of water separator pit.

Photograph 6. Interior of water separator pit.

5.3 Site 44, USCG Housing

5.3.1 Site Description

Remains of the USCG housing consist of twelve 4,000-square-foot (40-foot by 100-foot) foundations west of the former seaplane ramp and two larger (40-foot by 150-foot) concrete foundations east of the former seaplane ramp. All 14 of the residential buildings were moved intact off the island when USCG operations were removed from Annette Island in 1977. Figure 5-2 shows the areas where the buildings were before 1977.

5.3.2 Investigation History

The two larger buildings had associated heating oil underground storage tanks (USTs) near their foundations. During the 1997 limited remedial investigation (LRI), one UST at this site was sampled. A soil sample was collected from around the fill pipe of the northern UST at 6 to 8 inches below ground surface. The sample exhibited no obvious surface or subsurface staining or odor. Analytical results for this sample indicated a DRO concentration of 96 mg/kg, a RRO concentration of 35 mg/kg, and a lead concentration of 6 mg/kg. The northern UST contained 6 inches of product on 20 inches of water, and the southern UST had 2 inches of product on 6 inches of water (Ridolfi, 1998c).

The heating fuel source for the other 12 residential sites was a 6,000-gallon aboveground storage tank (AST) located north of the fire station/post exchange building (see Figure 5-7). The tank is no longer there and only the concrete saddles remained during the LRI. No visible staining or odor was reported during the 1997 LRI. One soil sample was collected 5 feet from the base of the south saddle, near exposed copper piping. This sample had a DRO concentration of 740 mg/kg, an RRO concentration of 18 mg/kg, and a lead concentration of 3 mg/kg (Ridolfi, 1998c).

After the LRI, contractors for the COE completed a site characterization and assessment at each tank location, and in October 1998 the two USTs and associated piping and the associated piping and concrete saddles for the former AST were decommissioned by COE contractors. Residual fluids were removed from the USTs, the USTs and all associated piping were excavated and removed, and contaminated soil above cleanup action levels was excavated and removed. Approximately 300 feet of piping associated with the former AST and the concrete saddles was also excavated and removed. According to results presented in the July 30, 1999 site visit, assessment report prepared by HLA/Wilder JV, soil confirmation samples collected from the limits of the excavations indicated no remaining contamination above cleanup levels. The report recommended no further soil removal at the UST and AST sites (HLA/Wilder JV, 1999).

Site 44 was included in the asbestos survey and inventory completed in 1997. Scattered remains of cementitious water pipes and transit wallboard that were found within the general vicinity of the former USCG buildings were tested for asbestos and determined to be asbestos-containing materials (ACM). Results of the survey at this location are included in the *Metlakatla Peninsula Asbestos Inventory and Abatement Plan* (Ridolfi, 1998b).

Harding Lawson Associates/ Wilder Construction Company Joint Venture

PROJECT NUMBER

42003

Site Assessment Report Annette Island, Alaska

APPROVED DATE FILE NAME 8/99

5.3.3 PA Activities and Results

The results of the 1998 UST and AST removal and cleanup activities indicated that no remaining contamination from past fuel storage at Site 44 above cleanup levels is present.

Therefore, no sampling was completed at this site during the PA site visit. The building foundations that are still present, the two former UST locations, and the former AST saddles were surveyed. The area to the west of the former seaplane ramp, where the 12 building foundations are located, and along the shoreline downgradient of the area, was visually inspected for any signs of remaining abandoned fuel lines or other evidence of remaining petroleum contamination. No fuel lines or visible evidence of fuel contamination were observed. Photographs 7 and 8 show the Site 44 areas observed during the PA site visit.

5-16 ANC/LKB763.DOC/003670012

Photograph 7. Former location of USCG housing units. View looking south toward Site 46.

Photograph 8. Concrete saddles left at former AST location.

5.4 Site 45A, USCG Seaplane Base

5.4.1 Site Description

Site 45 was included in the 1996 PA and described in that PA report as the remains of the seaplane base consisting of an approximately 150-foot-long, gravel-covered seaplane ramp, wood and metal debris, several dilapidated wood frame buildings, and metal huts (Ridolfi, 1996). Site 45A includes the onshore portion of the seaplane base, according to the 1999 C3 Plan. For purposes of this PA and because of the absence of structures or other potential sources of contamination, the USCG has defined Site 45A as the fueling valve box formerly associated with the 3-inch fuel pipeline that ran alongside the Seaplane Ramp Road (see Figure 5-2.

5.4.2 Investigation History

The valve box was investigated during the RI completed by COE contractors in 1998. According to the 1999 RI report, the valve box had been filled in with soil and was not sampled during the RI. An area was excavated around the valve box to a depth of approximately 2.5 feet to determine if there was associated piping. No piping was found either entering or exiting the valve box. A soil sample was collected from within the excavated area and analyzed for GRO, DRO, RRO, BTEX, PAHs, and lead. Analytical results included DRO at 17 mg/kg, GRO at 0.88 mg/kg, RRO at 96 mg/kg, lead at 17 mg/kg, and no detectable levels of PAHs (DOWL/Ogden Joint Venture, 1999). Figure 5-6 from the RI report shows the sampling location and analytical results for the valve box.

5.4.3 PA Activities and Results

During the PA site visit, Site 45A was observed and appeared as described in the 1999 RI report. There was no visual evidence of petroleum contamination in or surrounding the valve box. The area that had been excavated next to the valve box during the 1998 RI was reexcavated by shovel to a depth of approximately 18 inches, and a soil sample (45A99SL15) was collected from the bottom of the excavation (see Photographs 9 and 10). The sample was field-screened and submitted for laboratory analysis for GRO, DRO, RRO, and BTEX. Analytical results for the sample collected at Site 45A showed RRO at 23 mg/kg. No other contaminants were detected.

Following sampling, the valve box location was surveyed. The general area around the valve box location was visually inspected for indications of additional former structures or other potential sources of contamination that should be included in Site 45A. No other structures or potential contaminant sources were found.

5-18 ANC/LKB763.DOC/003670012

Photograph 9. Valve box location (not visible; in trees at left of photograph).

Photograph 10. Valve box with sample 45A99SL15 location.

155538.A1.RP PhotoPages.fh8 01/03/00 anc/jb

5.5 Site 46, USCG Fire Station/Post Exchange

5.5.1 Site Description

The remains of the fire station/post exchange consist of a 40-foot by 100-foot, single-story, cement-block building. The USCG constructed the building, which replaced an airplane engine nose hangar, after World War II. The building housed a fire station and the USCG Post Exchange. A pad directly behind the building was reported as possibly an electrical-equipment pad (Ridolfi, 1998). Figure 5-2 shows the location of Site 46.

5.5.2 Investigation History

The 1996 PA conducted at Site 46 reported that a large AST outside the building gravity-fed heating fuel to 12 residential buildings in the USCG housing area (Ridolfi, 1996). The AST was later assigned as part of Site 44; therefore, its location was not investigated during the PA for Site 46.

Site 46 was investigated during the 1997 LRI. During the LRI, roofing debris was observed littering the area immediately north of the building. A standpipe situated at the walkway entrance to the building indicated a possible UST location and was reported in the LRI. A magnetometer reading suggested that an UST approximately 9 feet long and 4 feet in diameter existed at the site. The galvanized standpipe appeared to go down 18 inches and then deadhead. One sample was taken from around the standpipe during the LRI. The sample indicated a lead concentration of 61 mg/kg (Ridolfi, 1998c).

Site 46 was included in the 1997 asbestos survey and lead-based paint investigation. During the asbestos survey, paper/foam wallboard with white fibrous, powdery coating was analyzed and determined to be ACM (Ridolfi, 1998b). Exterior and interior paint samples and soil samples at the building were collected and analyzed. The results indicated lead-based paint on both exterior and interior walls of the building (Ridolfi, 1998a). An asbestos abatement project that removed all ACM from the building and from debris piles on the north and west sides of the building was completed in 1998. The abatement project included a survey of an area approximately 25 feet from the building and cleanup of any ACM observed within the area (Ridolfi, 1999).

5.5.3 PA Activities and Results

During the PA site visit, the standpipe in the front of the building was inspected. Sample collection from the pipe was not possible because the pipe deadheaded at a pipe joint less than a foot from the top of the pipe. A small room in the northwest corner of the building, where a cement pad and electrical equipment debris indicated that a transformer might have been situated, was inspected. No signs of a past hazardous substance release were visible. A shallow subsurface soil sample (4699SL14) was collected approximately 7 feet off the doorway to the former potential electrical equipment room and downgradient of the building, field screened, and submitted for laboratory analysis for PCBs. No stained soil or other indications of surface contamination or other potential sources of contamination at the building were observed. Exterior and interior painted walls of the building had already been sampled during the 1997 investigation and were not sampled during this PA. Photographs 11 through 14 show the building and soil sample location.

5-20 ANC/LKB763.DOC/003670012

Analytical results for the soil sample collected at this site reported no detectable levels of PCBs.

Following the sampling activities, the sampling location, building corners, and suspected UST standpipe location were surveyed.

Photograph 11. Exterior of former Fire Station/Post Exchange. View looking northwest.

Photograph 12. Entrance to former Fire Station/Post Exchange. Standpipe visible in foreground.

Photograph 13. Northwest corner of former Fire Station/Post Exchange. Doorway to potential former electrical room.

Photograph 14. Sample 4699SL14 location (flagging) downgradient of former electrical room.

5.6 Site 47A, USCG Taxiways and Parking Circles

5.6.1 Site Description

The two USCG amphibious plane taxiways and associated parking circles are located off the Seaplane Ramp Road (also called Seaplane Base Road), directly across from Site 46 (former fire station/post exchange). The taxiways and parking circles have been converted into roadways. Site 47A includes the first (southeastern) parking circle (see Figure 5-2).

5.6.2 Investigation History

Site 47 was originally identified as the taxiway and 4 parking circles. The site was reported in the 1996 PA and the 1998 LRI reports. At that time the parking circles contained concrete slabs and electrical hookups for trailers, a metal hut, a metal storage shed, unidentified metal canisters with pressure-locking lids, 55-gallon barrels, and miscellaneous debris scattered on the parking circle pads or in adjacent ponds. An old, out-of-service Westinghouse transformer was found in a standing metal hut, resting directly on the concrete slab floor of the hut (Ridolfi, 1998a). The location of the transformer was documented at Site 47C in the 1998 LRI report (Ridolfi, 1998b).

During the LRI, two suspected AST locations were found on the southeast-most parking circle of Site 47A. Both suspected AST sites had cribbing that is typical of AST installations. This same parking circle had several (more than 10) 6-inch shell storage canisters and approximately 12 to 14 steel barrels (Ridolfi, 1998b).

The Site 47A location is also identified in the June 1999 C3 Plan as Site 47B for purposes of investigating abandoned shell storage (powder) canisters. Site 47B was included in the drum removal and RI completed by COE contractors in 1999.

5.6.3 PA Activities and Results

During the PA site visit, several site markers and flagging left from the COE drum removal and RI activities were observed throughout Site 47A. Drums and empty metal canisters were also observed in the area. One drum appeared to be partially full and was labeled with "USN" stamps, indicating property of the U.S. Navy (Photograph 16). An area of visibly stressed vegetation was also observed; this area also included several stakes with flagging from the drum removal and RI, drums, and empty metal canisters. Because it was believed that this site had been sampled during the RI, additional sampling was not completed at this site during the PA. Photographs 15 through 18 show site conditions observed at the time of the PA site visit. An attempt was made to locate the two suspected former AST locations described in the 1998 LRI report. Wooden debris that may be one of the potential AST locations was observed.

The locations of the site markers and flagging observed during the site visit were surveyed and the label information on the markers was recorded.

Following the PA, additional follow-up with the COE and COE contractors who completed the 1999 site work at Site 47B was conducted in order to obtain updated site information for Site 47A. At that time it was discovered that the site work completed by the COE contractors

5-24 ANC/LKB763.DOC/003670012

in 1999 consisted only of removing 63 powder canisters. No drum removal or site sampling was completed during that work. The stakes that were observed during the PA indicate the locations where the canisters were removed, rather than sampling locations. Future sampling planned by the COE at those locations is anticipated to only include sampling for unexploded ordnance contamination.

Photograph 15. Drums and debris in tundra off former parking circle. View looking east.

Photograph 16. Partially full drum, with "USN" label, in tundra off parking circle.

155538.A1.RP PhotoPages.fh8 01/03/00 anc/jb

Photograph 17. Drums, debris, powder canister removal location markers from 1999 removal and RI. View looking east.

Photograph 18. Drums, debris, powder canister removal location markers from 1999 removal and RI. View looking northeast.

5.7 Site 68, USCG Water Treatment Plant

5.7.1 Site Description

The remains of the sewage treatment plant at this site are northeast of the former USCG quarters (Site 69). Details about its past operation were not found in files reviewed for this PA; however, it is assumed it operated as a domestic sewage treatment plant for the building(s) in that area. A June 13, 1973, USCG Partial Plot Plan (Coast Guard Drawing No. 2190) identifies the structure as a sewage treatment plant. A transformer pad is also shown on the plot plan as being less than 10 feet off the southern side of the structure. Figure 5-3 shows the location of Site 68.

5.7.2 Investigation History

A PCB transformer located at this site was reported in the 1999 C3 Plan (FAA, 1999). The treatment plant building was included in the 1997 asbestos survey and investigation. At the time of that investigation, the roof of the treatment plant building had been removed and the walls were partially knocked down. The survey reported that the building was originally a 20-foot by 30-foot wood-frame building. It contains empty aluminum vats and a control panel. Samples of interior and exterior cementitious transit wallboard were analyzed and determined to be ACM (Ridolfi, 1998b).

5.7.3 PA Activities and Results

During the PA site visit, the former treatment plant was observed and inspected for evidence of environmental contamination such as stained soil or the presence of drums or a transformer. The structural design of the plant indicates it was a wastewater treatment plant. The heavy rains and saturated soil conditions hampered observation of possible stained soil in the area during the site visit. No obvious areas of stained soil were observed. No drums, transformers, or transformer pads were observed at the site. Remains of a possible transformer that were observed in front of the adjacent USCG quarters (Site 69) might have been the transformer mentioned in the C3 Plan; however, this was not confirmed during the site visit. The walls of the former treatment plant were completely dismantled and scattered around the site (see Photographs 19 and 20).

A paint chip sample (6899PT07) was collected from the remaining metal structure and analyzed for lead. Photograph 20 shows the sample location. The lead concentration in the paint chip sample was reported at $21,000 \, \text{mg/kg}$.

After the sampling activities at this site, the sampling location and building corners of the remaining treatment plant structure were surveyed.

5-28 ANC/LKB763.DOC/003670012

Photograph 19. Former sewage treatment plant. View looking north.

Photograph 20. Paint chip sample 6899PT07 on top of metal sewage plant structure.

5.8 Site 69A, USCG Quarters-POL

5.8.1 Site Description

The remains of the USCG quarters consist of a two-story, T-shaped building that is divided into what were individual living units and shared lavatories. The building has a boiler room containing an insulated boiler, water tank and piping, vinyl tile flooring, and cement exterior siding. A former AST that supplied fuel to the building was located at the northeast corner of the building, outside the former kitchen/dining room. Figure 5-3 shows the location of Site 69A.

Photographs 21 and 22 show the building as it appeared in 1977, when the USCG ceased using the building and moved its operations off the island. Use of the building by other entities after the USCG left the island is not well documented; however, a 1986 inventory report of the Annette Island Landing Field completed for the COE states that the building was in use by the Metlakatla Indian Community Council at the time the inventory site visit was conducted in September 1985 (Sverdrup, 1986).

5.8.2 Investigation History

The former quarters were investigated during the 1997 LRI. At that time, a small metal building containing what appeared to be a waste incinerator was reported near the quarters building. At that time, the building contained four partially filled, unlabeled 55-gallon barrels (Ridolfi, 1998c).

The LRI Report also documented that during the August 1997 Founders Day, a community member suggested that there was a former X-ray clinic at this facility and was concerned that there was radiological contamination. The facility was investigated for radiological effects with use of a Victoreen radiation detector. The entire facility was swept, including all wings and the upstairs and downstairs. No indications of radiological contamination were found (Ridolfi, 1998c).

During the LRI it was confirmed that the boiler for the building was fueled by an AST that was northeast of the kitchen/dining area. Two supply/return lines near the AST were of the same type and size as those connected to the boiler, and both had strong diesel residue on the inside pipe surfaces. Possible soil contamination in this area was not further investigated (Ridolfi, 1998c).

Work being done at the site at the time of the LRI had also uncovered the ground surface immediately surrounding the building perimeter, and the possible existence of a former UST was investigated. No evidence of a UST was found (Ridolfi, 1998c).

Site 69 was included in the asbestos survey investigation and lead-based paint investigation completed in 1997 and reported in 1998. Paint samples from interior walls and soil samples surrounding the building were analyzed and determined to contain elevated levels of lead. Suspected ACM was encountered during dismantling of the structure in 1997, and the building was flagged as an Asbestos Hazard Area. Results of the asbestos investigation

5-30 ANC/LKB763.DOC/003670012

Photograph 21. Former USCG quarters in May 1977. View of front entrance looking north.

Photograph 22. Former USCG quarters in May 1977. Former AST shown at right, near northeast corner of former dining room area in building. View looking west.

documented ACM in damaged condition throughout the building. The building is still flagged for no admittance because of its status as an Asbestos Hazard Area.

5.8.3 PA Activities and Results

PA activities at this site included visual inspection of the area immediately surrounding the building and soil sampling at two areas for potential petroleum contamination. The interior of the building was not accessed because of the asbestos hazard. Photographs 23 through 28 show site conditions at the time of the site visit. A soil sample (69A99SL05) was collected approximately 4 feet from the northeast corner of the building in the vicinity of the former AST (Photograph 25). Another soil sample (69A99SL06) was collected approximately 6.5 feet from the former boiler room in the back of the building (Photograph 26). The samples were field screened and submitted for laboratory analysis for GRO, DRO, RRO, and BTEX. Observations of soil staining in the general area were hampered by the rain and saturated soil conditions during the site visit; however, no obvious areas of stained soil or stressed vegetation from contamination were observed at this site.

Results for soil sample 69A99SL05, collected at the former AST location, include 170 mg/kg of DRO and 13 mg/kg of RRO. No detectable levels of GRO and BTEX compounds were reported.

Results for soil sample 69A99SL06, collected behind the boiler room, include 7.3 mg/kg of DRO and 13 mg/kg of RRO. No detectable levels of GRO or BTEX compounds were reported.

A former PCB transformer with a "No PCBs" label affixed was observed near the southwest corner of the building (see Photograph 27). Unlabeled remains of another potential transformer were observed in front of the building (Photograph 28). The remains could be the same transformer reported at Site 68 during the 1997 LRI, but this was not confirmed during the site visit. A debris pile near the northeast corner of the building contained drums. One drum was labeled with a Metlakatla Power and Light label.

The two soil sample locations and building corners were surveyed after the sampling activities.

5-32 ANC/LKB763.DOC/003670012

Photograph 23. Current condition of former USCG quarters. View looking north

Photograph 24. Current condition of former dining room area of USCG quarters. Part of debris pile visible at right. View looking west.

Photograph 25. Soil sample 69A99SL05 location, near northeast corner of building, in area of former AST.

Photograph 26. Soil sample 69A99SL06 location, near boiler room at back of building. View looking east.

Photograph 27. Labeled non-PCB abandoned transformer south of USCG quarters.

Photograph 28. Former USCG quarters with unlabeled abandoned transformer shown at right of building. View looking northwest.

5.9 Site 71A, USCG Garage–Asbestos

5.9.1 Site Description

This site was identified and described in the 1996 PA. The garage is a 40-foot by 100-foot metal building and was primarily used by the USCG as an office building (Ridolfi, 1996). Site 71A includes the USCG garage for purposes of evaluating ACM only. Fuel storage and potential fuel contamination at this location will be addressed by the BIA as Site 71B. Figure 5-3 shows the location of Site 71A.

5.9.2 Investigation History

At the time of the 1997 LRI, the MIC sawmill was currently using the building to store spare parts, barrels of lubricants, and other petroleum-related products. Minor maintenance on sawmill equipment and vehicles was also being performed. A small storage yard for miscellaneous equipment was reported to be northwest of the garage (Ridolfi, 1998c).

A 6,000-gallon AST was reported on the northeast side of the garage. This tank sits on wood blocks and was in use at the time of the LRI. The storage yard contained a 1,500-gallon AST on concrete. The caps of the AST were missing. An abandoned AST was found among the trees east of the equipment storage yard (Ridolfi, 1998c).

The LRI did not include sampling within the interior of the garage building. During the LRI, one soil sample was collected along the gravel path on the edge of the tarmac where surface drainage accumulates. Results indicated concentrations of 2,400 mg/kg of DRO, 6,300 mg/kg of RRO, and 178 mg/kg of lead (Ridolfi, 1998c).

Site 71 was included in the 1997 asbestos survey and investigation. Transit and gypsum wallboard and floor tiles from the interior of the building were sampled and documented to be ACM (Ridolfi, 1998b).

5.9.3 PA Activities and Results

During the PA site visit, the interior of the garage building was evaluated. The building is divided into two halves. Currently one half of the building is used for a welding shop, and the other end of the building contains equipment, oils, and fuel products for the sawmill. A caretaker for the building was painting a boat in the building at the time of the site visit.

Because the garage had been sampled for asbestos in 1997, no additional effort was made to identify potential ACM in the building during the PA site visit. A paint chip sample (71A99PT08) was collected from a second-floor interior wall and analyzed for lead. The location for this sample was not surveyed because it was inside the building. The sample ID number was written on the wall where the paint chips were collected, for future reference. Photographs 29 through 32 show the garage building as it appeared during the PA site visit. Photograph 33 shows the location where the paint chip sample was collected from the second-floor hallway of the building.

Analytical results from the paint chip sample reported a lead concentration of 490 mg/kg.

5-36 ANC/LKB763.DOC/003670012

The hangar vehicle fuel pad to the north of the garage building and several locations on the tarmac were surveyed for potential future use in establishing surface drainage patterns in the area.

Photograph 29. Exterior of former USCG garage. View looking southwest.

Photograph 30. Exterior of former USCG garage. View looking east.

Photograph 31. Interior of former USCG garage.

Photograph 32. Interior of former USCG garage.

Photograph 33. Paint chip sample 71A99PT08 location on second floor interior wall of former USCG garage.

155538.A1.RP PhotoPages.fh8 01/03/00 anc/jb

5.10 Site 72, Hangar Boiler Building

5.10.1 Site Description

The boiler building is approximately 30 feet by 25 feet by 18 feet and contains two boilers and associated piping. Figure 5-3 shows the location of Site 72.

5.10.2 Investigation History

Site 72 was previously investigated and reported in the 1998 LRI report and the *Annette Island Brownfields Site Assessment Report* (E&E, 1999). Removal of a regulated PCB-contaminated transformer completed in December 1997 is reported in the *Final Report, Task Order #18, PCB Transformer Removal, Former USCG Airstation Annette Island* (Carson Dorn, 1999). Information from the reports is summarized below.

In December 1997, an inactive pad-mounted electrical transformer containing PCB-contaminated transformer oil was removed at this site. The transformer was on a concrete pad approximately 20 feet northwest of the boiler building. The transformer and concrete pad were removed and shipped offsite for disposal. Eleven soil samples were collected following the removal activities; PCBs (Aroclor 1260) were detected in four of the samples. The highest PCB concentration was 0.7 mg/kg in a soil sample collected 6 feet north of the transformer location at 1.5-foot depth. PCBs (Aroclor 1260) were also detected (0.032 mg/kg) in a soil sample collected between the boiler building and the hangar across the street, northeast of the boiler building, indicating possible PCB contamination in site soils from a source other than the boiler building transformer. Additional investigation to determine the source(s) of PCB contamination in the area and delineate the horizontal and vertical extent of contamination was recommended (Carson Dorn, 1999). The LRI report includes a discussion of the three duplicate soil samples collected during the 1997 PCB removal project. All duplicate soil samples were below cleanup levels for PCBs (Ridolfi, 1998c).

During the Brownfields site assessment, five collocated surface and subsurface soil samples were collected around the boiler building and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, PCBs, GRO/BTEX, DRO, RRO, and metals. Significant results from the surface soil sampling included benzo(a)pyrene, an SVOC associated with petroleum compounds, at an estimated 94.5 micrograms per kilogram ($\mu g/kg$); PCBs (Aroclor 1260) to 12,000 $\mu g/kg$; DRO up to 21,000 mg/kg; and arsenic, chromium, mercury, and nickel at concentrations at least three times background levels. The respective subsurface soil sample results for the sampling locations included PCBs (Aroclor 1260) at 200 $\mu g/kg$; DRO up to 15,000 mg/kg; and arsenic, chromium, and nickel at levels at least three times background levels. The report noted that some of the PCB levels exceeded EPA cleanup goals and some of the DRO levels exceeded ADEC cleanup levels (E&E, 1999).

Figure 2-10 from the Brownfields report shows the sampling locations used during investigations at the boiler building before the Brownfields assessment, and Figure 3-4 from the same report shows the sampling locations used during the Brownfields assessment.

Table 3-11 from the Brownfields report includes analytical results from the site assessment. These figures and table are included in Appendix C.

Site 72 was included in the 1997 asbestos survey and investigation. ACM was documented in the boiler insulation, boiler door gaskets, pipe insulation, and pipe fitting insulation (Ridolfi, 1998b). All ACM was removed from the building in 1998. Because the site was treated as a historical site during the asbestos removal, only the ACM was removed. The piping was left in place. Lockdown was applied after removal was complete (Ridolfi, 1999).

The boiler building was also included in the 1997 lead-based paint investigation. Paint chips and soil samples were collected for lead analysis. Results of the analyses indicated that a door and interior walls contained lead-based paint. Removal of lead-based paint surfaces was recommended following asbestos abatement (Ridolfi, 1998a). The paint removal work has not been conducted to date.

5.10.3 PA Activities and Results

Previous investigations at the boiler building have documented petroleum hydrocarbons and PCBs above cleanup action levels at Site 72, and no additional soil samples were collected at this site during the PA site visit. A lead-based paint investigation has determined that paint containing lead exists in the building; therefore, no additional paint samples were collected. The asbestos removal project reportedly removed all ACM from the building. During the site visit, the area surrounding the boiler building was inspected for stained soil or other visual evidence of potential petroleum contamination. Heavy rain and saturated soil conditions hampered observation of stained soil at the time of the site visit. No additional areas of potential petroleum contamination were documented during the site visit. Building corners and the location of the former transformer were surveyed. Photographs 34 and 35 show the boiler building and surrounding area at the time of the site visit.

5-42 ANC/LKB763.DOC/003670012

Photograph 34. Exterior of hangar boiler building. Boiler building AST (Site 73) shown in heavy brush vegetation at left of photograph. View looking west.

Photograph 35. Interior of hangar boiler building.

5.11 Site 73, Boiler Building AST

5.11.1 Site Description

This 4,000-gallon AST is situated south of the hangar boiler building. The tank supplied fuel to the boilers in the adjacent building. It rests on concrete saddles, inside a 6- to 8-inch earthen berm that is overgrown with vegetation. Figure 5-3 shows the location of Site 73.

5.11.2 Investigation History

The boiler building AST was investigated during the 1989 Phase II field investigation, 1997 LRI, and 1998 Brownfields site assessment. During the LRI, it was labeled as a fuel oil tank and reported as empty. One soil sample was collected at the east end of the tank during the LRI. The soil was reported as visibly stained, with a slight odor. Results indicated a DRO concentration of 1,200 mg/kg and a lead concentration of 574 mg/kg (Ridolfi, 1998c). COE contractors had sampled the same location during the 1989 Phase II Field Investigation. Results of the 1989 sample indicated 265 parts per million (ppm) of lead in the soil sample and 141 ppm total petroleum hydrocarbons (TPH). BTEX concentrations were less than 1 ppm in the soil sample. Figures 2-10 and 3-4 from the Brownfields report (Appendix C) show the sampling locations from these previous investigations. Table 3-11 from the Brownfields report includes analytical results from the assessment (Appendix C).

The AST was also included in the 1997 lead-based paint investigation. One paint chip and two soil samples were collected at this location for lead analysis. Results indicated the green paint surface on the tank contains lead (Ridolfi, 1998a).

5.11.3 PA Activities and Results

Previous investigations conducted at this site have concluded that petroleum and lead contamination exists at the AST location and that paint on the AST contains lead. Therefore, no additional samples or survey coordinates were collected during the PA. The open valve observed on the AST confirmed that the tank is empty. No obvious areas of soil staining from petroleum contamination were observed during the site visit; however, observations of soil condition were hampered by heavy rain and saturated soil conditions during the site visit. Photograph 34 from the previous Site 72 discussion shows the tank next to the boiler building. Heavy, brushy vegetation surrounding the tank prevented close-up photography of the tank exterior.

5-44 ANC/LKB763.DOC/003670012

5.12 Site 74, USCG ASTs

5.12.1 Site Description

The two 10,000-gallon ASTs at this site stored fuel and were used for USCG flight operations. Figure 5-3 shows the location of Site 74.

5.1.2 Investigation History

This site was investigated during the 1989 Phase II field investigation and the 1997 LRI. At the time of the LRI, the two 10,000-gallon ASTs (28 feet long and 8 feet in diameter) with fuel-loading swing nozzles were positioned on elevated metal tank stands. Soil staining was observed under the ASTs (Ridolfi, 1998c).

Three soil samples (including one duplicate sample) were collected at this site during the LRI. One sample was taken under the dispenser of the northern AST, and two samples were collected under a dripping pipe that smelled of gasoline at the southern AST. The maximum concentration of GRO was 1,100 mg/kg; the maximum DRO concentration was 48,000 mg/kg; the maximum RRO concentration was 34 mg/kg; and the maximum lead concentration was 1,900 mg/kg (Ridolfi, 1998c). The same location had been sampled during the 1989 field investigation. Results of the soil sample collected at that time included 4,080 ppm lead, 17.2 ppm of TPH, and low levels (less than 1 ppm) of BTEX. The sample locations used in the previous investigations are shown in Figure 2-10 from the Brownfields site assessment report (Appendix C).

The ASTs at this site were also included in the 1997 lead-based paint investigation. Two paint chip and two soil samples were collected and analyzed for lead. Results indicated lead in the silver surface paint on the tanks (Ridolfi, 1998a).

5.12.3 PA Activities and Results

During the PA site visit, the ASTs and area immediately surrounding the ASTs were visually inspected. A measuring gauge on the northern tank read "0" inches in fuel depth. The two tanks appeared and sounded empty; however, there was no access to the valves on top of the tanks and the interiors of the tanks could not be observed. Three shallow subsurface soil samples, plus one duplicate QA/QC sample, were collected at this site, field screened, and submitted for laboratory analysis of GRO, DRO, RRO, BTEX, and lead. Paint samples from the tanks were not collected because the painted surface of the tanks had been previously investigated. The soil samples were from the following locations:

- Approximately 5 feet directly in front of the southern tank (7499SL09 and 7499SL10 [duplicate])
- In front of the northern tank, underneath a closed spigot. Petroleum odors were noted in the soil at this location (7499SL11).
- Underneath the structure supporting the two tanks, in the center of the tanks (7499SL12)

Photographs 36 through 38 show the ASTs at the time of the PA and the sampling locations.

The following analytical results were reported for the soil samples collected at Site 74:

7400SL09: 37 mg/kg of DRO

130 mg/kg of RRO

No detected GRO, BTEX compounds

13 mg/kg of total lead

7499SL10: 34 mg/kg of DRO

100 mg/kg of RRO

No detected GRO, BTEX compounds

19 mg/kg of total lead

7499SL11: 1,000 mg/kg of GRO

13,000 mg/kg of DRO 1.0 mg/kg of ethylbenzene 15 mg/kg of total xylenes

No detected RRO

380 mg/kg of total lead

7499SL12: 200 mg/kg of DRO

570 mg/kg of RRO

No detected GRO, BTEX compounds

24 mg/kg of total lead

Sample locations at Site 74 were surveyed following the sampling.

5-46 ANC/LKB763.DOC/003670012

Photograph 36. USCG ASTs. Soil sample 7499SL09/7499SL10 and 7499SL11 locations. View looking southwest.

Photograph 37. USCG ASTs. Flagging at right is location of soil sample 7499SL09/7499SL10. Location of soil sample 7499SL12 is under left side of AST structure, as shown. View looking north.

Photograph 38. Location of soil sample 7499SL11 under valve on northern AST.

1.RP PhotoPages.fh8 01/03/00

5.13 Site 75, Hangar

5.13.1 Site Description

The hangar is a 160-foot by 200-foot by 30-foot steel frame structure that consists mainly of an open bay on the north side. The northern and southern 20 feet of the building have first-and second-floor rooms configured as offices, which in the past have been used by the FAA, USCG, U.S. Postal Service, and Weather Bureau. The building has insulated steam heat pipes, cement interior walls, cement exterior siding, and vinyl tile flooring in the office areas (Ridolfi, 1998c). Until recently, a sawmill operation was conducted within the hangar. The sawmill equipment is still in the building; however, the sawmill is not operating. Figure 5-3 shows the location of Site 75. Photographs 39 and 40 from May 1977 show the interior of the hangar building as it appeared when the USCG left the island.

5.13.2 Investigation History

Site 75 has been investigated several times and is reported in several documents, most recently in the LRI report (Ridolfi, 1998c) and the Brownfields site assessment report (E&E, 1999). The Brownfields report contains a concise history of past investigations at the hangar. The following information about the investigation history at Site 75 has been summarized from that report. Figure 2-10 from the Brownfields report (Appendix C) shows sampling locations discussed in the previous sampling investigations.

1989 COE Site Investigation

In October 1989, contractors for the COE performed an inventory of materials and debris remaining at the landing field associated with the hangar facility. The purpose of the investigation was to identify hazardous wastes and petroleum hydrocarbon contamination sources that may require remedial action. Samples were collected from suspected release locations in the general vicinity of the hangar building, inactive transformers stored in the hangar, miscellaneous 55-gallon drums in the area, and building materials suspected to contain asbestos. The project report concluded that the hangar building did not contain significant quantities of hazardous waste (E&E, 1990).

1990 FAA Underground Storage Tank (UST) Study

The FAA conducted an investigation at the Annette Island FAA Station in 1990 to identify the location and size of suspected USTs. None were discovered at the hangar facility (E&E, 1999).

1991 FAA Environmental Compliance Investigation

In 1991, the FAA conducted an Environmental Compliance Investigation (ECI) at the Annette Island FAA Station, including the hangar building. ECI activities included literature searches, real estate record searches, a site reconnaissance, a site inventory of toxic and hazardous materials, site sampling, sample analysis, and production of a report. On the basis of the ECI, removal of inactive PCB- and non-PCB-containing electrical equipment at the hangar building, including 7 PCB and 30 non-PCB transformers, was recommended (E&E, 1992).

ANC/LKB763.DOC/003670012 5-49

Photograph 39. Interior of hangar building in May 1977.

Photograph 40. Interior of hangar building in May 1977.

1992 FAA Removal Project

The FAA removed hazardous and nonhazardous wastes and materials from locations throughout the Annette Island FAA Station during this project. A preliminary site visit to identify wastes was conducted in September and a removal action was completed in October 1992. PCB wipe samples were collected from floor stain locations at former electrical transformer oil spills in the hangar building, with results up to $79,000~\mu g$ per 100~square centimeters (E&E, 1993).

1994 FAA Expanded Site Investigation/Interim Cleanup

The FAA conducted an Expanded Site Investigation/Interim Cleanup in June 1994 at the Annette Island FAA Station. Sampling activities included additional wipe samples for PCBs inside the hangar building and sampling of additional previously uninventoried electrical equipment. Remediation of the PCB floor contamination in the hangar was attempted. The cleanup of the floor contamination did not successfully remove the PCB contamination, and further action was recommended (E&E, 1995a).

1994 FAA Decontamination Action

In September 1994, the FAA conducted additional cleanup activities in the hangar building to try to remediate the PCB floor contamination by using *CAPSUR*, a petroleum-based cleanser. Follow-up wipe sampling concluded the cleaning had not sufficiently removed the PCBs from the cement floor (E&E, 1999).

1995 FAA Contamination Investigation and Removal Action

In 1995, FAA completed a RI to delineate the extent of PCB contamination and to evaluate effective options for remediation in and around the hangar building. Removal of PCB-contaminated concrete and soil was completed, and surplus hazardous and nonhazardous materials from the hangar building and surrounding area were removed (E&E, 1995a).

1996 Preliminary Assessment

The hangar building was identified as a potential source of contamination in the Metlakatla Peninsula PA conducted in 1996. The hangar building was described in the PA as a 160- by 300- by 30-foot steel frame structure with metal roof and siding. The building was an open bay entered through large sliding doors on the north side. The east and west sides of the interior of the building had first- and second-floor rooms configured as offices. At the time of the PA, 13 electrical transformers labeled with non-PCB labels were stored directly on the concrete floor in a first-floor room on the south side of the building. The main bay housed an MIC sawmill operation. The sawmill operation had a 6,000-gallon fuel AST on the ground surface at the northwest corner of the building and a diesel-fueled sawdust-burning stack at the southwest corner of the building (Ridolfi, 1996). During a continuation of the PA and as part of an environmental assessment completed for several areas around the Annette Island facilities, a surface soil sample was collected between the hangar and the former USCG garage (Site 71). The sample was analyzed for GRO, DRO, RRO, BTEX, and lead. Detected contaminants included DRO at 2,400 mg/kg, RRO at 6,300 mg/kg, and lead at 178 mg/kg (E&E, 1999).

ANC/LKB763.DOC/003670012 5-51

In addition to the above investigations that are summarized in the Brownfields report, the following studies and cleanups, including the Brownfields site assessment, have been completed at Site 75 since the 1996 PA:

1996 and 1997 Remedial Action

The Final Remedial Action Report (OHM, 1998) describes the results of remedial actions accomplished at several Annette Island locations, including the hangar building and adjacent property. The remedial actions were conducted by contractors for the FAA from September 25 to December 6, 1996, and April 23 to May 30, 1997. The work was performed in three rooms in the northeast corner portion of the hangar. The hangar was in use as a sawmill at the time. Figure 1-3 from that report shows the layout of the rooms and additional information regarding the areas sampled and discussed in the report (Figure 5-8). The three rooms, designated as rooms A, B, and C, contained ACM used for piping insulation, and PCB-contaminated concrete flooring, wall sheeting, debris, conduit and piping. PCB-contaminated ACM, debris, conduit, piping, and electrical components were removed and shipped offsite for disposal (OHM, 1998). Approximately 109 cubic yards of PCB-contaminated soil was excavated from a grass lot between the hangar and the former USCG garage and from an area underneath a portion of the removed concrete in Room C. Geotextile fabric and plastic liner were placed over one localized excavated area at the grass lot where the cleanup action level had not been achieved (26 mg/kg total PCBs remaining in soil) at 2 feet below the ground surface. All areas were backfilled with clean borrow following the cleanup activities.

The southern portion of the grass lot, between the hangar and garage and south of the concrete walkway, was not remediated because of limitation of the contractor's scope of work. Eight soil samples collected from this area were found to have PCB concentrations ranging from 0.76 mg/kg to 59 mg/kg.

After contaminated concrete and debris were removed, scarification of concrete and scaling and stripping of painted surfaces in the three rooms reduced all surface PCB concentrations to less than the cleanup action level of 10 μ g/100 cubic centimeters, except for one beam that contained 11 μ g/100 cubic centimeters. Restoration of the site included backfilling of excavated sites and restoration of the concrete surfaces in Rooms A and B and placement of new concrete flooring in Room C (OHM, 1998).

1997 Metlakatla Peninsula Lead-Based Paint Investigation

During the 1997 lead-based paint investigation completed at several Annette Island facilities, paint chip and soil samples were collected from the hangar building and analyzed for lead. Results indicated that white exterior paint, green hangar door paint, yellow upstairs interior wall paint, and gray interior wall paint contained lead. At the time of this investigation, the bay portion of the hangar building housed a sawmill and wood-sorting tables. The sawmill was being operated by MIC members and, as Metlakatla Forest Products, was producing thick-dimension lumber (Ridolfi, 1998a).

5-52 ANC/LKB763.DOC/003670012

1997 Metlakatla Peninsula Asbestos Inventory and Abatement Plan

The hangar building was included in the asbestos survey investigation completed in 1997 and reported on in 1998. Thirty-four samples of 19 suspected ACMs were collected and analyzed. The results indicated ACM throughout the building (Ridolfi, 1998b).

1997 Limited Remedial Investigation

An LRI at several areas around Annette Island, including Site 75, was completed in 1997 and reported on in 1998. During the 1997 LRI, 13 out-of-service transformers were observed to be stored in a first-floor room on the south side of the building and one on the grass outside of the northwest corner of the hangar. The transformers were positioned directly on the concrete slab floor, and each had a "non-PCB" label prominently displayed. The bay portion of the hangar housed a saw and wood-sorting tables. At the time of the LRI, the sawmill was operated by MIC members and produced thick-dimension lumber. The mill operation had a 6,000-gallon AST positioned on the ground surface at the northwest corner of the hangar and a diesel-fueled sawdust-burning stack at the southwest corner of the hangar.

During the LRI, one soil sample was collected at this site to evaluate the potential for surface runoff and migration of contaminants from the site. The sample location was a storm drain sump near the hangar where surface runoff collected. Results indicate concentrations of 550 mg/kg of DRO, 1,100 mg/kg of RRO, and 289 mg/kg of lead (Ridolfi, 1998c).

During the LRI, the fill and vent ports of a UST were uncovered west of the hangar and north of the concrete slab areas. The tank appeared to be mostly empty, with some oily water remaining (Ridolfi, 1998c). Two additional UST locations that were reported by FAA personnel were described in the LRI report, but their locations were not confirmed during the LRI.

1997 Brownfields Site Assessment

The EPA Superfund Technical Assessment and Response Team conducted the field sampling portion of a Brownfields Site Assessment at several locations around Annette Island in 1997 and completed the reporting in 1999. Site 75 was included in the assessment. Table 3-11 and Figure 3-4 from the report (Appendix C) show the sample results, comparison values, and sampling locations. Three sets of collocated surface and subsurface soil samples were collected from the hangar building area and analyzed for PCBs, pesticides, and metals. PCBs (Aroclor 1260) were detected in a surface soil sample collected between the hangar building and the former USCG garage (Site 71) at 2,000 $\mu g/kg$, which exceeded EPA cleanup goals. Two pesticide compounds (P,P'-DDD and P'P-DDT) were detected in a surface soil sample collected near the MIC office trailer located at the southwest corner of the building at 3,300 and 5,200 $\mu g/kg$, respectively, which exceeded EPA cleanup goals. Chromium and nickel were detected in surface and subsurface samples at levels at least 3 times background levels and exceeded ADEC cleanup action levels. Pesticides and PCBs were not detected at concentrations above comparison standards in subsurface soils at the hangar building.

A sediment sample that was collected from the manhole near the west corner of the hangar building adjacent to the warehouse was analyzed for pesticides, PCBs, and metals. Analytical results were compared to Washington State sediment quality values, background

5-54 ANC/LKB763.DOC/003670012

values, and ecological screening benchmarks. Detected analytes that exceeded the Washington values included PCBs. In addition, several metals were detected at concentrations at least 3 times background values and that exceeded ecological screening benchmarks. The zinc concentration also exceeded the Washington State sediment quality values.

In addition to soil and sediment sampling, a groundwater excavation pit was dug to 8.5 feet below ground surface between the hangar building and the former USCG garage (Site 71). An unfiltered groundwater and a filtered groundwater sample were collected and analyzed for VOCs, SVOCs, pesticides, PCBs, and metals. PCBs were detected in the unfiltered groundwater at 4.1 micrograms per liter (μ g/L), which exceeded three comparison standards. DRO was detected at a concentration of 110 mg/L in the unfiltered groundwater standard, which exceeded the ADEC cleanup levels. In the unfiltered groundwater sample, the lead concentration (172 μ g/L) exceeded all four comparison standards used for the assessment, manganese (5,400 μ g/L) exceeded two of the standards, and chromium (186 μ g/L) and nickel (1,480 μ g/L) concentrations exceeded three of the standards. The report noted that no contaminants were detected in the filtered groundwater sample at concentrations exceeding the comparison standards (E&E, 1999).

The Brownfields site assessment report concluded that DRO and metals surface soil concentrations at levels above the comparison standards were widespread throughout the hangar building area. The contaminants have migrated to subsurface soils at most of the locations sampled and also into groundwater collected between the hangar and former USCG garage (Site 71) at concentrations above federal and state comparison standards used for the assessment. The report recommended actions including restricting access to contaminated areas, conducting additional investigations to determine the depths of soil contamination, removing and disposing of contaminated soil, and providing worker safety training regarding contamination exposure and protection (E&E, 1999).

5.13.3 PA Activities and Results

The previous investigations conducted at Site 75 have documented that petroleum hydrocarbons remain in surface and subsurface soils and in groundwater at the hangar building area. PCBs also remain in site soils above cleanup goals used in previous studies and cleanups. Additional sampling outside of the hangar building was not conducted during the PA site visit. Three project and one duplicate QA/QC paint chip samples were collected from interior painted walls inside the hangar building at the following three locations:

- A vertical steel support beam on the northern wall in the main hangar bay area (7599PT01)
- Interior wall in a room on first floor on the northern side of the hangar (7599PT02)
- Interior wall in a room on first floor on the southern side of the hangar (7599PT03 and 7599PT04 [QA/QC duplicate]). This room also contained several old, labeled non-PCB transformers that have been described in previous investigations at this site. Photograph 46 shows some of the transformers as they appeared during the PA site visit.

ANC/LKB763.DOC/003670012 5-55

Photographs 41 through 46 show the hangar area and the PA sampling locations at the time of the site visit. All paint chip samples were analyzed for lead; two of the three project samples (7599PT01 and 7599PT03) and the duplicate sample (7599PT04) were also analyzed for PCBs.

Analytical results for sample 7599PT01, collected from the vertical support beam on the northern side of the hangar, reported lead concentration of 37,000 mg/kg and PCBs (Aroclor 1254) at 0.7 mg/kg.

Analytical results for sample 7599PT02, collected from the interior wall in a room located on the northern side of the hangar, reported lead concentration of 6,200 mg/kg. PCBs were not requested or analyzed for this sample.

Analytical results for sample 7599PT03, collected from an interior wall in the room located on the southern side of the hangar, showed a lead concentration of 25,000 mg/kg and PCBs (Aroclor 1254) of 0.850 mg/kg. The duplicate sample 7599PT04 collected at this location had a lead concentration of 49,000 mg/kg and PCBs (Aroclor 1254) of 1.0 mg/kg.

The three sampling locations were not surveyed, because they were inside a building. The sample ID numbers were written on the walls at the location from which the paint chip samples were collected. Numerous outside location points immediately north and west of the hangar were surveyed to try to establish a surface drainage gradient. These points continue west behind the hangar boiler building (Site 72) and toward the manmade lagoon behind that site.

5-56 ANC/LKB763.DOC/003670012

Photograph 41. Exterior of hangar building. Sawmill equipment and lumber visible at entrance and inside building. View looking west.

Photograph 42. Exterior and interior of eastern side of hangar, with sawmill equipment visible.

Photograph 43. Interior northern wall of hangar. Location of paint chip sample 7599PT01 shown on vertical metal support.

155538.A1.RP PhotoPages.fh8 01/03/00 anc/jb

Photograph 44. Paint chip sample 7599PT02 location inside room on northern side of hangar.

Photograph 45. Location of paint chip sample 7599PT03/7599PT04 on vertical metal support inside room on southern side of hangar.

Photograph 46. Abandoned non-PCB labeled transformers inside room on southern side of hangar (same room from which paint chip samples 7599PT03/7599PT04 were collected).

SECTION 6

Conclusions

The primary goal of the PA completed at the 13 sites for which the USCG is the lead agency was to identify areas of actual or potential contamination from past practices and site use. The PA incorporated historical information obtained from file records and personnel interviews with new information obtained during the site visit, including analytical data from samples collected at the sites. The limited sampling at the sites was performed to help determine if contamination existed in selected areas and was not intended to define the nature and extent of potential contamination. Reported levels of contaminants were compared to cleanup levels for residential soil published in *Metlakatla Indian Community Guidelines for Cleanup and Remediation of Open Dumps and Other Contaminated Sites* (Annette Islands Reserve, undated).

In addition to information about potential contamination at the sites, GPS coordinates for sampling locations and other pertinent features at each site were obtained during this PA. Photographs were also taken to document the current site conditions observed during the PA. This information is available for future use by the USCG and other agencies conducting work at Annette Island sites.

On the basis of historical data regarding past site use and investigations, and observations and analytical data obtained during this PA, the following conclusions are presented for each USCG site.

Site 33B, Former USCG Storage Area

- The PA followed a removal action and RI conducted by COE contractors earlier in 1999.
 According to planning documents completed for the removal action and RI, a collection of drums at revetment H-40 was to be removed and environmental samples collected at this site. Stakes and flagging observed throughout revetments H-38 and H-40 during the PA site visit at Site 33B indicate that soil, sediment, surface water, and groundwater samples were collected during the RI.
- Visible evidence of asphalt remains along the southern edge of the H-40 gravel pad, and sheens in surface water next to the asphalt remains were observed during the PA site visit.
- MIC cleanup levels do not include values for sediment. A comparison of the sediment concentrations detected in the one sediment sample collected during the PA near the asphalt remnants at H-40 to MIC soil cleanup levels indicates that DRO and RRO concentrations exceed MIC cleanup levels.. The sample was collected less than 10 feet from an asphalt-contaminated section of the H-40 gravel pad. Because of the muskeg environment from which the sample was collected and the high moisture content in the sample (90.5 percent), biogenic activity likely contributed to the reported DRO and RRO results and biased the results high.

ANC/LKB763.DOC/003670012 6-1

- Revetments H-38 and H-40 appear to be used as disposal sites for abandoned vehicles, household appliances, batteries, and other wastes. The recently constructed targets and the recently spent shell casings observed at H-40 indicate the revetment has been used as a firing range. These activities may have contributed to contamination at this site.
- Preliminary results from the 1999 COE RI indicate that approximately 149 drums were removed from this site; the majority of the drums contained asphalt thought to be left over from past runway construction. Preliminary analytical results from the RI indicate petroleum hydrocarbons and metals exist at the site at concentrations exceeding screening levels used during the RI. A final report containing complete information about the removal and RI will be submitted to the COE in mid-2000.

Site 40, Pipeline Oil/Water Separator

- A sediment sample from the separator had previously been collected and analyzed during a RI completed for the COE in 1998. Results from that sample were compared to ADEC Method 2 cleanup levels and MIC cleanup levels. The RI report concluded that reported contaminants were below the ADEC Method 2 cleanup levels. The report also concluded that although DRO and RRO concentrations in the sediment sample exceeded MIC cleanup levels, the high moisture content of the sample indicated that biogenic activity likely biased the results high. The total lead concentration reported for the sample also exceeded MIC cleanup levels. The report concluded that determination of leachable lead in the sample may result in alternative acceptable total lead levels.
- Record reviews and site observations completed during this PA did not document additional potential sources of contamination at the separator pit or the immediately surrounding area.
- The open-topped separator pit will continue to accumulate water and sediment to some
 extent. Site observations during the PA indicate that the pit is likely not watertight; the
 level of water in the pit was relatively low and no records indicate the pit has been
 emptied in the past. Removal and proper disposal of separator pit contents (including
 accumulated water and sediment) will be necessary before demolition of the structure.

Site 44, USCG Housing

- The UST and AST locations associated with this site were investigated and cleaned up in 1998.
- No additional sources of potential contamination were documented in site records or from observations completed during the site visit.
- The 1997 asbestos survey concluded that floor tiles and wallboard debris scattered around the site are ACM. Although a removal of ACM was completed at several Annette Island sites in 1999, the information reviewed for this PA did not document that all debris in the Site 44 area was removed. According to USCG records, the housing units at this site were removed intact when they were transported to Sitka; therefore, it is unlikely that ACM debris associated with building interiors, such as floor tiles or wallboard, observed at this site in 1997 originated from the housing units.
- Specific solid waste disposal requirements apply to any remaining ACM at this site.

6-2 ANC/LKB763.DOC/003670012

• No soil contamination that requires additional investigation or corrective action was documented at this site as a result of the PA.

Site 45A, USCG Seaplane Base

- A soil sample was previously collected next to the valve box during an RI completed for the COE in 1998. Analytical results from that sample were compared to ADEC Method 2 cleanup levels and MIC cleanup levels. The RI report concluded that reported contaminants were below all applicable cleanup levels.
- A soil sample collected in the same location during the PA detected only a very low RRO concentration of 23 mg/kg, which is well below current applicable MIC cleanup levels.
- No additional sources of potential contamination were documented in site records or from observations completed at this site during the PA.
- No soil contamination that requires additional investigation or corrective action was documented as a result of this PA.

Site 46, USCG Fire Station/Post Exchange

- An asbestos abatement project completed at this site in 1998 removed all ACM from within the building and in an area of approximately 25 feet surrounding the building.
- Exterior and interior paint on the building contains lead-based paint, according to results of the lead-based paint investigation completed at the building in 1997.
- The potential UST location described in previous investigations at this site was not confirmed during the PA, although a standpipe is still visible.
- A soil sample collected downgradient from a former electrical room at the northwest corner of the building was analyzed for PCBs. No detectable levels of PCBs were reported in the sample.
- Record reviews and site observations completed during this PA did not document additional potential sources of contamination at the building or the immediately surrounding area.
- Specific removal and disposal requirements apply to lead-based paint that is removed from the building.

Site 47A, USCG Taxiways and Parking Circles

• This site was investigated during the removal action and RI completed for the COE in 1999. At the time of the PA site visit, stakes and flagging observed throughout Site 47A were believed to indicate locations where sediment and surface water samples were collected during the RI; therefore, additional sediment and water samples were not collected. Information obtained from COE contractors following the PA site visit confirmed that the stakes and flagging marked locations where 63 abandoned powder canisters had been removed and no site sampling had been conducted.

ANC/LKB763.DOC/003670012 6-3

- Abandoned drums and other metal debris observed at this site during the PA site visit require removal and proper disposal.
- Visible evidence of contamination, including stained soil and stressed vegetation, was observed in areas where the majority of the RI stakes were also observed.
- Complete information about the removal action completed by COE contractors in 1999 will be submitted in a report to the COE in mid-2000.

Site 68, USCG Water Treatment Plant

- The information obtained during the PA did not confirm the presence of a transformer at this location or evidence of contamination from a transformer or other contaminant sources.
- Visual observation of the area immediately adjacent to and surrounding the treatment plant was not possible because of the remains of the former building roof and walls.
- An asbestos survey conducted at this site in 1997 documented that the interior and exterior wallboard of the former building was ACM.
- Heavy rains at the time of the PA site visit hampered observation of possible stained soil in the area; however, no obvious areas of stained soil were observed.
- A paint chip sample collected from the remaining treatment plant structure indicates the structure is covered with lead-based paint.
- Special removal and disposal requirements apply to paint that is removed from the former separator structure.

Site 69A, USCG Quarters-POL

- Historical photographs document the exterior condition of the building at the time the USCG left the island in 1977. A 1986 COE report documented that the building was used by MIC after the USCG left. Use of the building after the USCG left the area may have contributed to any existing contamination at this site.
- Two areas of potential petroleum contamination were evaluated during the PA:
 - Previous investigations at this site documented that the boiler was fueled by the AST.
 - DRO and RRO detected in soil samples collected at the northeast corner of the former dining room (former AST location) and on the west side of the building (outside former boiler room) were below MIC cleanup levels.
- Previous investigations have documented the presence of ACM and lead-based paint within the building, and the building is currently designated as an Asbestos Hazard Area.
- No additional sources of potential contamination were documented in site records or from observations completed at this site during the site visit.

6-4 ANC/LKB763.DOC/003670012

Site 71A, USCG Garage-Asbestos

- An asbestos survey conducted at this site in 1997 documented ACM in interior wallboard and floor tiles.
- Analytical results from a paint chip sample collected from the second floor hallway wall
 indicate lead-based paint.
- Special removal and disposal requirements apply to the ACM and lead-based paint within this building.

Site 72, Hangar Boiler Building

- An asbestos abatement project removed all ACM from this building in 1999.
- A PCB-contaminated transformer and cement pad were removed from this site in 1997.
 Follow-up soil sampling indicated that PCB contamination exists in site soils and that the source of the contamination may be from source(s) other than the removed transformer.
- Results of soil sampling during the 1997 Brownfields site assessment indicate that soil
 contaminated with elevated levels of petroleum hydrocarbons, metals, and PCBs above
 applicable cleanup levels exist at this site.

Site 73, Boiler Building AST

- Previous sampling at this site indicated that the soil is contaminated with petroleum hydrocarbons and lead in excess of applicable cleanup levels.
- The surface coating on the tank is lead-based paint, according to results of the 1997 lead-based paint investigation.
- Special removal and disposal requirements apply to the paint removed from the AST.

Site 74, USCG ASTs

- Previous sampling at this site indicated the soil is contaminated with petroleum hydrocarbons and lead in excess of applicable cleanup levels.
- The surface coating on the tanks is lead-based paint, according to results of the 1997 lead-based paint investigation.
- Soil sampling conducted during the PA indicates that GRO, DRO, RRO, xylenes, and lead above MIC cleanup levels exist in site soils.

Site 75, Hangar

- Historical photographs document conditions of the building when the USCG left the
 island in 1997. The PA site visit recorded current conditions of the building after years of
 use by other entities, including MIC. A sawmill is currently situated within the hangar
 building.
- PCBs and ACM were removed from the hangar building during past cleanups. ACM remains within the building.

ANC/LKB763.DOC/003670012 6-5

- Exterior and interior lead-based paint exists at the hangar, according to the 1997 lead-based paint investigation. Paint chips sampled during the PA confirmed the existence of lead-based paint at three locations within the hangar.
- Analysis of paint chip samples collected during the PA reported detectable levels of PCBs.
- Previous investigations at this site have documented PCBs, petroleum hydrocarbons, and metals in soil and petroleum hydrocarbons in groundwater at the hangar site at levels above applicable cleanup levels.

6-6 ANC/LKB763.DOC/003670012

SECTION 7

Works Cited

Annette Island Working Group and USCG. *Coordinated Comprehensive Cleanup Plan, Annette Island, Alaska.* June 1999.

Annette Islands Reserve. *Metlakatla Indian Community Guidelines for Cleanup and Remediation of Open Dumps and Other Contaminated Sites.* Undated.

Carson Dorn. United States Coast Guard Final Report, Task Order #18, PCB Transformer Removal; Former USCG Airstation Annette Island. January 12, 1999.

CH2M HILL. *Annette Island Preliminary Assessment Work Plan.* Prepared for the U.S. Coast Guard. November 1999.

DOWL/Ogden Joint Venture. *Remedial Investigation Report, Annette Island Remedial Investigation, Annette Island, Alaska.* Prepared for U.S. Department of the Army, Corps of Engineers, Pacific Ocean Division. August 1999.

Ecology and Environment (E&E), Inc. *Annette Island Brownfields Site Assessment Report.* June 1999.

E&E, Inc. Environmental Compliance Investigation Report, Annette Island FAA Station, Annette Island, Alaska. May 1992.

E&E, Inc. Field Investigation Report, Phase II Field Investigation, Former DOD Sites, Annette Island FAA Station, Annette Island, Alaska. November 1989.

E&E, Inc. Hazardous and Toxic Waste Report, Phase II Field Investigation, Annette Island Landing Field, Annette Island, Alaska. March 1990.

E&E, Inc. Site Cleanup and Investigation Report, Volume 1, Expanded Site Investigation/Interim Cleanup, Annette Island FAA Station, Annette Island, Alaska. May 1995a.

E&E, Inc. Trip Report, FAA Hazardous Waste Removal/Disposal Project, Annette Island FAA Station, Annette Island, Alaska. February 1993.

E&E, Inc. Trip Report, FAA Nonhazardous and Hazardous Materials Removal/Disposal Project, Annette Island FAA Station, Annette Island, Alaska. June 1995b.

Federal Aviation Administration. *Annette Island Environmental Restoration Issues.* In conjunction with BIA, COE, USCG. August 1997.

HLA/Wilder JV. *Site Assessment Report, U.S. Coast Guard Former Facilities.* Prepared for Department of Transportation, U.S. Coast Guard, Civil Engineering Unit. July 30, 1999.

Hogan, Eppie V. Overview of Environmental and Hydrogeologic Conditions at Nine Coastal and Island Sites in South-Central and Southeast Alaska, USGS Open-File Report 95-404. 1995.

ANC/LKB763.DOC/003670012 7-1

Jacobs Engineering Group Inc. *Removal Action and Remedial Investigation, Annette Island, Alaska, Final Work Plan.* June 1999.

OHM Remediation Services Corporation. *Final Remedial Action Report, Annette Island PCB Removal, Metlakatla, Alaska.* September 1998.

Ridolfi Engineers and Associates, Inc. *Metlakatla Peninsula Asbestos Abatement Phase I Closure Plan (Draft)*. July 30, 1999

Ridolfi Engineers and Associates, Inc. *Metlakatla Peninsula Asbestos Inventory and Abatement Plan.* June 30, 1998b.

Ridolfi Engineers and Associates, Inc. *Metlakatla Peninsula Lead-Based Paint Investigation.* June 30, 1998a.

Ridolfi Engineers and Associates, Inc. *Metlakatla Peninsula Limited Remedial Investigation.* Prepared for the Metlakatla Indian Community. December 1998c.

Ridolfi Engineers and Associates, Inc. *Preliminary Assessment, Metlakatla Peninsula.* October 10, 1996.

Sverdrup & Parcel and Associates, Inc. *Defense Environmental Restoration Account Inventory Report for Annette Island Landing Field, Alaska*. January 1986.

7-2 ANC/LKB763.DOC/003670012

an Analytica Group company

CH2M Hill of Alaska 301 W. Northern Lights Blvd. Suite 601

Anchorage, AK 99503-2792

Attn: Colleen Burgh

RECEIVED BY CH2M HILL AX Suite 200 Broomfield, CO 80021

JAN 1 0 2000

(303) 469-8868 (800) 873-8707 FAX: (303) 469-5254

Order #: 99-12-189 Date: 12/30/99 14:35 Work ID: USCG PA

Date Received: 12/21/99 Date Completed: 12/29/99

SAMPLE IDENTIFICATION

Sample		Sample	
Number	Client Description	Number	Client Description
01	7499SL09	03	7499SL11
02	7499SL10	04	7499SL12

Enclosed are the analytical results for the submitted sample(s). Please review the CASE NARRATIVE for a discussion of any data and/or quality control issues. A listing of data qualifiers and analytical codes is located on the TEST METHODOLOGIES page at the end of the report.

If you have any questions regarding the analyses, please feel free to call.

Sincerely,

Roger S. Bain Project Manager

CH2M Hill of Alaska CASE NARRATIVE

Samples were prepared and analyzed according to methods outlined in the following references:

- Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, May 1994.
- Standard Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures, ASTM D 2216-80, July 1980.

All analyses meet quality assurance objectives.

. A braid weeks to display the series at a contract of the contract of

Sample: 01A 7499SL09 Collected: 12/01/99 Matrix: SOIL Test Description Method Result O Limit <u>Units</u> <u>Analyzed</u> ICP Metals, Total SW 6010B Lead 13 6.0 mg/Kg-DRY 12/28/99 Percent Moisture ASTM D2216 16.8 0.1 WT% 12/22/99 Sample: **02A 7499SL10** Collected: 12/01/99 Matrix: SOIL Test Description Method Result O Limit <u>Units</u> <u>Analyzed</u> ICP Metals, Total SW 6010B Lead 19 5.6 mg/Kg-DRY 12/28/99 Percent Moisture ASTM D2216 11.2 0.1 WT% 12/22/99 Sample: 03A 7499SL11 Collected: 12/01/99 Matrix: SOIL Test Description Method Result O Limit <u>Units</u> Analyzed ICP Metals, Total SW 6010B Leàd 380 5.8 mg/Kg-DRY 12/28/99 Percent Moisture ASTM D2216 13.1 0.1 WT% 12/22/99 Sample: 04A 7499SL12 Collected: 12/01/99 Matrix: SOIL Test Description Method Result O Limit Units Analyzed ICP Metals, Total SW 6010B Lead 24 5.9 mg/Kg-DRY 12/28/99 Percent Moisture ASTM D2216 15.4 0.1 WT% 12/22/99

A Second Lands Supplement Lands Application and Language Control

THE FOLLOWING CODES APPLY TO THE ANALYTICAL REPORT

RESULT field...

- ND = not detected at the reported limit
- NA = analyte not applicable (see case narrative/methods for discussion)

Q (qualifier) field...

GENERAL:

- * = Recovery or %RPD outside method specifications
- H = value is estimated due to analysis run outside EPA holding times
- E = reported concentration is above the instrument calibration range
- D = analyte was diluted to bring within instrument calibration range or to remove matrix interferences

ORGANIC ANALYSIS DATA QUALIFIERS:

- B = analyte was detected in the laboratory method blank
- J = analyte was detected above the instrument detection limit (IDL)
 but below the analytical reporting limit (CRDL)

INORGANIC ANALYSIS DATA QUALIFIERS:

- B = analyte was detected above the instrument detection limit (IDL) but below the analytical reporting limit (CRDL)
- W = post digestion spike did not meet criteria (85-115%)
- S = reported value determined by the Method of Standard Additions

3050_I: Acid Digestion of Sediments, Sludges, and Soils METHOD: 3050A

for ICP Metals

ICP_TS: METALS, Total (ICP)

METHOD: 6010B

PMOIST: PERCENT MOISTURE METHOD: ASTM D2216 Sample: 01A 7499SL09

Matrix: SOIL

Analysis ICP Metals, Total Percent Moisture	Method SW 6010B ASTM D2216	Collected 12/01/99 12/01/99	Received 12/21/99 12/21/99	TCLP date NA NA	<u>Extracted</u> 12/27/99	<u>Analyzed</u> 12/28/99 12/22/99
Sample: 02A	7499SL10	Mat	rix: SOIL			
Analysis ICP Metals, Total Percent Moisture	Method SW 6010B ASTM D2216	<u>Collected</u> 12/01/99 12/01/99	Received 12/21/99 12/21/99	TCLP date NA NA	<u>Extracted</u> 12/27/99	<u>Analyzed</u> 12/28/99 12/22/99
Sample: 03A	7499SL11	Mat	rix: SOIL			
Analysis ICP Metals, Total Percent Moisture	Method SW 6010B ASTM D2216	<u>Collected</u> 12/01/99 12/01/99	Received 12/21/99 12/21/99	TCLP date NA NA	<u>Extracted</u> 12/27/99	<u>Analyzed</u> 12/28/99 12/22/99
Sample: 04A	7499SL12	Mat	rix: SOIL			
Analysis ICP Metals, Total Percent Moisture	Method SW 6010B ASTM D2216	<u>Collected</u> 12/01/99 12/01/99	Received 12/21/99 12/21/99	TCLP date NA NA	<u>Extracted</u> 12/27/99	<u>Analyzed</u> 12/28/99 12/22/99

QA/QC REPORT

METHOD BLANK SUMMARY

CLIENT: CH2M_HILL_AK 12/30/99

PAGE: 1

ORDER#: 9912189

											· QC	SPECS
SAMPLE ID	ANALYTE		UNITS	ANAL DATE	RESULT	LIMIT	SPIKE		%REC	C FLAG	LOW	UPPEI
MB-9901430	ICP Metals,	Total	mg/Kg	12/28/99								
	Lead				ND	5.0						
				METHO	D BLANK S	PIKE SUMM	ARY					
											QC	SPECS
SAMPLE ID	ANALYTE		UNITS	ANAL DATE	RESULT	LIMIT	SPIKE	REF V	L %REC	FLAG	LOW	UPPER
MBS-9901430	ICP Metals,	Total	mg/Kg	12/28/99								
	Lead				50	5.0	50	NI	100	•	80	120
				MATRIX	C SPIKE ST	JMMARY						
CAMPLE ID											QC	SPECS
SAMPLE ID	ANALYTE		UNITS	ANAL DATE	RESULT	LIMIT	SPIKE	REF VA	L %REC	FLAG	LOW	UPPER
S912189-01A	ICP Metals, Lead	Total	mg/Kg-D	RY 12/28/99								
					64	6.0	60	1 2	85.0		70	130

SAMPLE DUPLICATE SUMMARY

CAMPLE ID	A VZA V VODO								QC SPECS
SAMPLE ID	ANALYTE	 UNITS	ANAL DATE	RESULT	LIMIT	F	REF VAL	%RPD FLAG	UPPER
D912189-01A	ICP Metals, Total	mg/Kg-D	RY 12/28/99						
	Lead			21	6.0		13	NC	35

N C

Anchorage, AK 99501 (907) 258-2155 FAX: (907) 258-6634

LGN: A912008

112/8

Chain of Custody Record / Analysis Reguest 5436 Snaune Drive Juneau, AK 99801 (907) 780-6668 FAX: (907) 780-6670 325 Interlocken, Pkwy. Ste. 200 Broomfield, Colorado 80021 [1303) 469-8868 FAX: (303) 469-5254 Quote: 49/20

		אומווו טו כ	rusiouy r		/ Analysis Hequest	7
	Project Name					
1 721/ V2N)	USCC TA			AEL		
4601	Report To: COLLEGN 30RLH Invoice To:	?1B	103AA	2	OA	
20566	P.O. Number:	?		3	·O	
1987 - 278 - 2551	ected	PA 503 PA 602 PA 61 K101	K103 101A 102A	(10 802 80 80		
FAX 271. 5736	e Coll	by El	by AK	(Spe /{ 2/ 3	or Fu	<i></i>
Sample ID		TAH TAq ^I	RRO A+A A+A	101	PH<2	AB II
1599 VTO1	2.1 1015 PAINT 1			*		
01256	1020 1			Service Control	52.36 UN A	
5.01,444)	1 570			*	f	
1.0 14 L C.	10 LO V			4		
9 PT 0	1110 245			+	0.	
69,8995106	2 10% ८५०।			*	2	
71 A 99 PT 08	11/50 10/211				4	
12 17 3CO7	2 116 627			* 4	03	
	127) / 1			. Y	2	
74595412	12351 7			4		
COMMENTS	Client has a	has requested DELIM			-	
2 2	of T lead to be can these samples	£8.	ADEC OS	STD	□2 Business Days (Σ) {d h win on □5 Business Days Pb samples Days To 15 Business Days	
RELINQUISHED BY SAMPLER: RECEIVED BY:	GALL THICK	(1)(()	omatogroms		12	7
7	5		RECEIVED BY:	0	Cooler Receipt Information	
11818	Mina Digitaling	Jana 1	A STATE OF THE PROPERTY OF THE	7	Temp Received: 3 · °C	
THOSE PALICETAD JOVA	Printed Name:	remon ?	rinted Magne:		Temp Received:°C # of Coolers:CYLR	·-···
	Firm: AA (•	J. S. C.	0 0	2	
1030 12.3 12/8/99	9 1030 12/3/99	1130	Date/Time: / 2 - 2 /- テラ	12:25	-	
1		1		1212	PAGE OF C	

COOLER RECEIPT FORM

CLIENT CH2M HULL AKSN# A9/207 PROJECT USCG PA ORD#	<u>99/2/8</u> 9
USE OTHER SIDE OF THIS FORM TO NOTE DETAILS CONCERNING CHECK-IN PROBLEMS/	DISCREPANCIES
A. PRELIMINARY EXAMINATION PHASE: Date cooler opened: 12 21-9 Shain of Custod by print sign	ly #
1. Did cooler come with a shipping slip air bill, etc.? If YES, enter carrier name & air bill number here: Factor 8/705/42/08.	MES NO
2. Were custody seals on outside of cooler?	YES NO
How many & where: seal date: seal name:	
3. Were custody seals unbroken and intact on the date and time of arrival? 4. Did you screen samples for radioactivity using the Coince Course.	YES NO
4. Did you screen samples for radioactivity using the Geiger Counter? 5. Were custody papers sealed in a plastic bag & taped inside to the lid?	YES NO
6. Were custody papers filled out properly ink, signed, etc?	NO NO
7. Did you sign custody papers in the appropriate place?	NO NO
8. Was project identifiable from custody paper?, If yes, enter project name at the top of this form	(ES) NO
9. If required, was enough ice used? VES NO Type of ice: WFT ATTIFF Temp Soc	MES) NO
9. If required, was enough ice used? YES NO Type of ice: WET BLUE Temp 600 C 10. Have designate person initial here to acknowledge receipt of cooler: date: 12/2/	.55
The same of the sa	
B. LOG-IN PHASE: Date samples were logged-in: 12 - 2 - 5 sign	
11. Describe type of packing in cooler:	p
12. Were all bottles sealed in separate plastic bags?	XES) NO
13. Did all bottles arrive unbroken & were labels in good condition?	NES NO
14. Were all bottle labels complete ID, date, time, signature, preservative, etc. ?	NES NO
15. Did all bottle labels agree with custody papers?	YES NO
16. Number of samples received Number of bottles received	. 0
17. Were correct containers used for the tests indicated?	XES NO
18. Were correct preservatives added to samples?	MES NO
19. Was a sufficient amount of sample sent for tests indicated?	XES NO
20. Were bubbles absent in volatile samples? If NO, list by Sample #/ID	YES NO.
21. Was the project manager called and status discussed? If yes, give details on the back of this form	YES (NO)
22. Who was called? By whom? date	

811 W. 8th Avenue, Anchorage, AK 99501 • (907) 258-2155 • FAX (907) 258-6634

CH2M HILL of ALASKA

301 W. NORTHERN LIGHTS, #601

Includes (3) hardcopy reports.
COELT emailed to: cburgh@ch2m.com.

ANCHORAGE, AK 99503

Attn: Ms. Colleen Burgh

Order #: A9-12-008

Date Reported: 12/17/99 13:52

Project Name: USCG PA - Annette Island

Date Received: 12/03/99

RECEIVED BY CH2M HILL AK

DEC 21 1999

SAMPLE IDENTIFICATION

Sample		Sample	
Number	Client Description	Number Cl	ient Description
01	69A99SL05		99SL11
02	69A99SL06	06 74	99SL12
03	7499SL09		B99SD13
04	7499SL10		A99SL15

Enclosed are the analytical results for the submitted samples. All analyses met quality assurance objectives, except where noted in the case narratives. If you have any questions regarding the analyses, please feel free to call.

Sheldon Stone Technical Manager

Analytica Alaska, Inc.

tabular sample report - fuels

811 W. 8th Ave. Anchorage, AK 99501 Phone-(907)258-2155 FAX-(907)258-6634

AAI Project ID: A912008

17-Dec-99

Client:

CH2M HILL of ALASKA

Project Name:

USCG PA

mg/Kg mg/Kg 41 (8.7) mg/Kg 13 (8.4) mg/Kg 130 (9.6) mg/Kg Units 100 (8.9) mg/Kg 4000 (86) mg/Kg 23 (9.0) mg/Kg U (500) 570 (9.3) RRO U (4.5) 37 (4.8) 170 (4.4) 200 (4.7) 7.3 (4.2) 34 (4.4) 13000 (250) 1100 (43) DRO mg/Kg U (2.1) mg/Kg U (2.1) mg/Kg U (2.0) mg/Kg **U** (2.1) mg/Kg 1000 (27) mg/Kg U (3.4) mg/Kg U (23) mg/Kg U (3.0) GRO Ethylbenzene Xylenes, Total U (0.23) U (0.021) U (0.021) U (0.020) U (0.030) U (0.021) 15 (0.27) U (0.034) U (0.021) U (0.021) U (0.034) U (0.021) U (0.020) U (0.030) 1.0 (0.27) U (0.23) U (0.021) U (0.030) U (0.021) U (0.27) U (0.021) U (0.020) U (0.034) U (0.23) Toluene U (0.021) U (0.020) U (0.030) U (0.021) U (0.27) U (0.034) U (0.23) U (0.021) Benzene Matrix SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL Sample ID Client Sample ID A912008-02 69A99SL06 4912008-07 33B99SD13 A912008-01 69A99SL05 A912008-08 45A99SL15 A912008-04 7499SL10 4912008-06 7499SL12 A912008-03 7499SL09 A912008-05 7499SL11

The number in parentheses is the reporting limit. "U" Indicates analyte was not detected. "()" Indicates analyte was not analyzed for. "J" indicates value is estimated.

The Science of Analysis, The Art of Service

ADEC Laboratory Approval Number: UST-014

LGN NUMBER: A912008

The samples were received properly packed in one cooler at 3.1°C and were refrigerated upon receipt.

QUALITY CONTROL

Except as noted below, all quality control objectives were met for this project.

The high DRO result for sample A912008-05 was due to the presence of diesel. The high DRO and RRO result for sample A912008-07 was probably due to the presence of biogenic materials.

Data Flag Definitions:

- U Indicates this analyte was analyzed for and not detected at the reporting limits listed.
- D Indicates the surrogate was diluted out of the sample due to high levels of organics native to the samples.
- ${\tt M}$ Indicates matrix effects are responsible for surrogate recoveries which are out of limits.
- NC Indicates analyte was detected in original analysis but not confirmed in secondary analysis.
- DR Indicates result is from secondary analysis at dilution.
- S Indicates corrective action did not accomplish desired results or corrective action not performed for cause. See QC Evaluation Summary for details.
- B Indicates analyte was found in Method Blank. Result should be considered as potentially biased high. See QC Evaluation Summary for details.
- < Indicates sample not preserved according to AK101 requirements. True value is greater than or equal to the reported value.</p>
- $\ensuremath{\mathtt{W}}$ Sample reported on a wet weight basis due to missing percent moisture aliquot.
- J Sample result is estimated. See QC Evaluation Summary for details.

Analyst: _______ Date: 12, 17, 99

CH2M HILL of ALASKA CASE NARRATIVE

Page 3

Analyst:

Siz Sb. Date: 12/17/29

SURROGATE

Squalane

o-Terphenyl

LIMITS

120

120

60

60

Client ID: 69A99SL05 Lab ID: 01A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 10:50 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120712.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 6.6 PARAMETER CAS # or ID RESULT LIMIT 0 Benzene 71-43-2 U 0.021 108-88-3 Toluene U 0.021 Ethylbenzene 100-41-4 U 0.021 Xylenes, Total 1330-20-7 U 0.021 Gasoline Range Organics VPH U 2.1 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene(PID) 99 왕 60 120 p-Bromofluorobenzene(PID) 100 용 60 120 1,4-Difluorobenzene(FID) 105 % 60 120 p-Bromofluorobenzene(FID) 89 용 60 120 Client ID: 69A99SL05 Lab ID: 01B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 10:50 Matrix: SOIL EXTRACTION DATE: 12/07/99 W9120732.D FILE ID: ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 6.6 PARAMETER CAS # or ID RESULT LIMIT Diesel Range Organics DRO 170 4.4 Residual Range Organics RRO 41 8.7

%RECOVERY

64 %

63 %

SURROGATE

Squalane

o-Terphenyl

LIMITS

120

120

60

60

Client ID: 69A99SL06 Lab ID: 02A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 10:55 Matrix: SOIL ANALYSIS DATE: 12/07/99 N9120705.D FILE ID: ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 7.8 PARAMETER CAS # or ID RESULT LIMIT 0 Benzene 71-43-2 U 0.020 Toluene 108-88-3 U 0.020 Ethylbenzene 100-41-4 U 0.020 Xylenes, Total 1330-20-7 U 0.020 Gasoline Range Organics VPH U 2.0 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene (PID) 100 60 120 p-Bromofluorobenzene (PID) 101 % 60 120 1,4-Difluorobenzene(FID) 106 % 60 120 p-Bromofluorobenzene (FID) 89 % 60 120 Client ID: 69A99SL06 Lab ID: 02B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 10:55 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120733.D 12/07/99 ANALYSIS DATE: UNITS: mg/Kg ANALYST: JKG DILUTION: 1 INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 7.8 PARAMETER CAS # or ID RESULT LIMIT 0 Diesel Range Organics DRO 7.3 4.2 Residual Range Organics RRO 13 8.4

%RECOVERY

65

66 %

16.5

Client ID: 7499SL09 Lab ID: 03A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 12:25 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120706.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 16.5 PARAMETER CAS # or ID RESULT LIMIT _Q_ Benzene 71-43-2 U 0.030 Toluene 108-88-3 U 0.030 Ethylbenzene 100-41-4 U 0.030 Xylenes, Total 1330-20-7 U 0.030 Gasoline Range Organics VPH U 3.0 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene(PID) 99 % 60 120 p-Bromofluorobenzene (PID) 100 % 60 120 1,4-Difluorobenzene (FID) 106 % 60 120 p-Bromofluorobenzene (FID) 90 % 60 120 Client ID: 7499SL09 Lab ID: 03B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 12:25 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120734.D ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE:

PARAMETER	CAS # or ID	RESULT	LIMIT	0
Diesel Range Organics	DRO	37	4.8	
Residual Range Organics	RRO	130	9.6	

SURROGATE	%RECOVERY		LIMIT	rs
o-Terphenyl	80 %	60	-	120
Squalane	96 %	60	_	120

SURROGATE

Squalane

o-Terphenyl

LIMITS

120

120

60

60

Client ID: 7499SL10 Lab ID: 04A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 12:26 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120707.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 14.9 PARAMETER CAS # or ID RESULT LIMIT Q_ Benzene 71-43-2 U 0.021 Toluene 108-88-3 U 0.021 Ethylbenzene 100-41-4 U 0.021 Xylenes, Total 1330-20-7 U 0.021 Gasoline Range Organics VPH U 2.1 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene(PID) 103 60 120 p-Bromofluorobenzene (PID) 109 용 60 120 1,4-Difluorobenzene(FID) 100 % 60 120 p-Bromofluorobenzene(FID) 85 % 60 120 Client ID: 7499SL10 Lab ID: 04B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 12:26 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120735.D ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: 1 INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % | MOISTURE: 14.9 PARAMETER CAS # or ID RESULT LIMIT Diesel Range Organics DRO 34 4.4 Residual Range Organics RRO 100 8.9

%RECOVERY

85 %

96 %

Diesel Range Organics

Residual Range Organics

SURROGATE

Squalane

o-Terphenyl

Client ID: 7499SL11 Lab ID: 05A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 12:30 Matrix: SOIL ANALYSIS DATE: 12/07/99 N9120713.D FILE ID: ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 8 Results reported on a dry weight basis. Percent Moisture: 20.4 PARAMETER CAS # or ID RESULT LIMIT 0 Benzene 71-43-2 U 0.27 Toluene 108-88-3 U 0.27 Ethylbenzene 100-41-4 1.0 0.27 Xylenes, Total 1330-20-7 15 0.27 Gasoline Range Organics VPH 1000 27 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene (PID) D 60 120 p-Bromofluorobenzene (PID) D 용 60 120 1,4-Difluorobenzene(FID) 60 120 p-Bromofluorobenzene(FID) D % 60 120 Client ID: 7499SL11 Lab ID: 05B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 12:30 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9121504.D ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: 50 INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 20.4 **PARAMETER** CAS # or ID RESULT LIMIT 0

DRO

RRO

%RECOVERY

D %

D %

13000

U

250

500

60

60

LIMITS

120

120

o-Terphenyl

Squalane

LIMITS

120

120

60

60

Client ID: 7499SL12 Lab ID: 06A BTEX/GRO in soil-101/8021B Test Description: Method: AK101/8021B Collected: 12/01/99 12:35 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120716.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 16.2 PARAMETER CAS # or ID RESULT LIMIT _0_ Benzene 71-43-2 U 0.034 Toluene 108-88-3 U 0.034 Ethylbenzene 100-41-4 U 0.034 Xylenes, Total 1330-20-7 U 0.034 Gasoline Range Organics VPH U 3.4 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene(PID) 99 60 120 p-Bromofluorobenzene (PID) 99 먖 60 120 1,4-Difluorobenzene(FID) 104 60 120 p-Bromofluorobenzene (FID) 88 % 60 120 Client ID: 7499SL12 Lab ID: 06B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 12:35 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120722.D 12/07/99 ANALYSIS DATE: UNITS: mg/Kg ANALYST: JKG DILUTION: INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 16.2 PARAMETER RESULT CAS # or ID LIMIT 0 Diesel Range Organics DRO 200 4.7 Residual Range Organics RRO 570 9.3 SURROGATE %RECOVERY

> 93 윶

Client ID: 33B99SD13 Lab ID: 07A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 13:45 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120710.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 . Results reported on a dry weight basis. Percent Moisture: 90.5 PARAMETER CAS # or ID RESULT LIMIT Q Benzene 71-43-2 U 0.23 Toluene 108-88-3 υ 0.23 Ethylbenzene 100-41-4 U 0.23 Xylenes, Total 1330-20-7 U 0.23 Gasoline Range Organics VPH U 23 SURROGATE **%RECOVERY** LIMITS 1,4-Difluorobenzene(PID) 99 용 60 120 p-Bromofluorobenzene (PID) 38 M % 60 120 1,4-Difluorobenzene(FID) 105 60 120 p-Bromofluorobenzene(FID) 42 M % 60 120 Client ID: 33B99SD13 Lab ID: 07B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 13:45 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120737.D ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: 1 INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 90.5 PARAMETER CAS # or ID RESULT LIMIT 0 Diesel Range Organics DRO 1100 43 Residual Range Organics RRO 4000 86 SURROGATE %RECOVERY LIMITS o-Terphenyl 80 윷 60 120 Squalane 89 60 120

Squalane

Client ID: 45A99SL15 Lab ID: 08A Test Description: BTEX/GRO in soil-101/8021B Method: AK101/8021B Collected: 12/01/99 15:40 Matrix: SOIL ANALYSIS DATE: 12/07/99 FILE ID: N9120711.D ANALYST: SG UNITS: mg/Kg INSTRUMENT ID: NAT DILUTION: 1 Results reported on a dry weight basis. Percent Moisture: 13.2 PARAMETER CAS # or ID RESULT LIMIT _Q_ Benzene 71-43-2 U 0.021 Toluene 108-88-3 U 0.021 Ethylbenzene 100-41-4 U 0.021 Xylenes, Total 1330-20-7 U 0.021 Gasoline Range Organics U 2.1 SURROGATE %RECOVERY LIMITS 1,4-Difluorobenzene (PID) 100 % 60 120 p-Bromofluorobenzene (PID) 102 % 60 120 1,4-Difluorobenzene (FID) 103 % 60 120 p-Bromofluorobenzene (FID) 87 % 60 120 Client ID: 45A99SL15 Lab ID: 08B Test Description: DRO/RRO in soil-AK102&103 Method: 3550/AK102/3 Collected: 12/01/99 15:40 Matrix: SOIL EXTRACTION DATE: 12/07/99 FILE ID: W9120719.D ANALYSIS DATE: 12/07/99 UNITS: mg/Kg ANALYST: JKG DILUTION: 1 INSTRUMENT ID: WOOF Sample reported on a dry weight basis. % MOISTURE: 13.2 PARAMETER CAS # or ID RESULT LIMIT Diesel Range Organics DRO U 4.5 Residual Range Organics RRO 23 9.0 SURROGATE %RECOVERY LIMITS o-Terphenyl 90 % 60 120

96 %

60

120

Method 8021 from Test Methods for Evaluating Solid Waste, USEPA SW-846, third edition, December 1996, is used for the analysis of volatile organics; benzene, toluene, ethylbenzene, xylenes (BTEX) in a solid matrix.

Method AK101 from the State of Alaska Department of Environmental Conservation (ADEC), Storage Tank Program, Underground Storage Tanks Procedures Manual, 18 AAC 78, as amended through January 31, 1996; is referenced for the analysis of gasoline range organics (GRO).

The quantitation range extends from the beginning of C6 to the beginning of C10.

Methods AK102 & AK103

from the State of Alaska Department of Environmental Conservation (ADEC), Storage Tank Program, Underground Storage Tanks Procedures Manual, 18 AAC 78, as amended through January 31, 1996; is referenced for the analysis of diesel range organics (DRO).

The quantitation range for AK102 extends from the beginning of Cl0 to the beginning of C25.

The standard used is a 1:1:1 mixture of Kerosene, DF1, and DF2.

The quantitation range for AK103 extends from the beginning of C25 to the end of C36. A mixture of 1:1 SAE 30 & SAE 40 motor oils are used for instrument calibration.

Solids are prepared via sonication according to methods AK102, AK103, and USEPA SW-846 method 3550.

QA Summary

Work Order: A912008 Client: CH2M_HILL

					CONTROL						
	Test C	lass/ N	Matrix/	Ref Sp					Conv		
eq. Sample ID	Code	Sub/Dup	Sub	Seq Se		ution	Weight	Volum		r Flag Ver	
GAS CCV	AK101S	T I	s	bed be	-	1.0	1.0	1.0	1.0	_	
			~			1.0	1.0	1.0	1.0	SG	
_			Theore	etical	Detection	Spike	Rec-	Spec	ន		
Analytes		Resi		Value	Limit	Value		Low	High		
Gasoline Range	_	1060.08	360 1000.	.0000 1	100.0000 1	100.000	106	75	125		
α,α,α-Trifluoro		51.39	950 50.	.0000	1.0000	50.0000	103	60	120		
p-Bromofluorobe	nzene-2	118.74	10 100.	.0000	1.0000 1	00.0000	119	60	120		
					CONTROL						·
	Test C	lass/ M	fatrix/	Ref Sp	k				Conv		
eq. Sample ID	Code	Sub/Dup	Sub	Seq Se	q Dil	ution	Weight	Volum		Flag Ver	
GAS CCV	AK101S	T I	s			1.0	1.0	1.0	1.0	SG	
					•						
			Theore	tical	Detection	Spike	Rec-	Spec	s		
Analytes		Resu		alue	Limit	Value		-	High		
Gasoline Range	Organics	1051.26	30 1000.	0000 1	00.0000 1			75	125		
α,α,α-Trifluoro	toluene	50.57		0000	1.0000			60	120		
p-Bromofluorobe	nzene-2	104.64	90 100.	0000	1.0000 1			60	120		
					CONTROL						
		Sub/Dup	Sub	Ref Sp	k q Dilı	ution '	-	Volume		Flag Ver	
_		Sub/Dup		_	k q Dilı	ution '	Weight 1.0	Volume			
	Code	Sub/Dup	Sub S	Seq Se	k q Dilı	1.0	-		Factor	Flag Ver	
6 GAS CCV	Code	Sub/Dup	Sub S Theore	Seq Se	k q Dilu 1	1.0	1.0	1.0 Spec	Factor	Flag Ver	
6 GAS CCV	Code AK101S	Sub/Dup T I Resu	Sub S Theore lt V	Seq Sed tical I	k q Dilu 1 Detection	1.0 Spike Value	1.0	1.0 Spec	Factor	Flag Ver	
6 GAS CCV Analytes Gasoline Range C	Code AK101S Organics	Sub/Dup T I Resu	Sub S Theore lt V 80 1000.	Seq Sed tical I	k q Dilu Detection Limit	Spike Value	1.0 Rec- overy	1.0 Speca	Factor 1.0 High	Flag Ver	
GAS CCV Analytes Gasoline Range (α,α,α-Trifluorot	Code AK101S Drganics toluene	Sub/Dup T I Resu 988.95	Sub S Theore 1t v 80 1000. 70 50.	Seq Section 1 decision	k q Dilu Detection Limit 00.0000 11	Spike Value	Rec- overy	1.0 Specs Low 1	Factor 1.0 High 125	Flag Ver	;
GAS CCV Analytes Gasoline Range (α,α,α-Trifluorot	Code AK101S Drganics toluene	Resu 988.95	Sub S Theore 1t v 80 1000. 70 50.	Seq Section 1 decision	k q Dilu Detection Limit 00.0000 11	Spike Value	1.0 Rec- overy 98.9 105	1.0 Speca Low 1 75 60	Factor 1.0 Figh 125	Flag Ver	;
6 GAS CCV Analytes Gasoline Range (α,α,α-Trifluorot	Code AK101S Drganics toluene	Resu 988.95	Sub S Theore 1t v 80 1000. 70 50.	Seq Section 1 decision	k q Dilu Detection Limit 00.0000 11	Spike Value	1.0 Rec- overy 98.9 105	1.0 Speca Low 1 75 60	Factor 1.0 Figh 125	Flag Ver	;
Analytes Gasoline Range (α,α,α-Trifluorot α-Bromofluorober	Code AK101S Drganics toluene	Resu 988.95 52.50 114.01	Sub S Theore 1t V 80 1000. 70 50. 80 100.	Seq Section 1 decision	Detection Limit 00.0000 11 1.0000 5 1.0000 10	Spike Value	1.0 Rec- overy 98.9 105	1.0 Speca Low 1 75 60	Factor 1.0 Figh 125	Flag Ver	3
Analytes Gasoline Range (α,α,α-Trifluorot α-Bromofluorober	Code AK101S Organics toluene nzene-2	Resu 988.95 52.50 114.01	Sub S Theore 1t	tical lalue	Detection Limit 00.0000 11 1.0000 5 1.0000 10	Spike Value	1.0 Rec- overy 98.9 105 114	1.0 Speca Low 1 75 60	Factor 1.0 1.0 1igh 125 120 120	Flag Ver SG	3
Analytes Gasoline Range (α,α,α-Trifluorot α-Bromofluorober	Code AK101S Organics toluene nzene-2	Resu 988.95 52.50 114.01	Sub S Theore 1t	tical lalue 0000 10000 0000	Detection Limit 00.0000 11 1.0000 10 CONTROL k	Spike Value 1.00.000 50.0000	1.0 Rec- overy 98.9 105 114	1.0 Speca Low 1 75 60 60	Factor 1.0 1.0 1igh 125 120 120	Flag Ver	3
Analytes Gasoline Range (α, α, α-Trifluorot α-Bromofluorober eq. Sample ID 102 CCV	Code AK101S Organics toluene nzene-2 Test Ci Code S	Resu 988.95 52.50 114.01	Sub S Theore 1t	tical	Detection Limit 00.0000 11 1.0000 10 CONTROL k	Spike Value 1.00.000 50.0000 00.0000	1.0 Rec- overy 98.9 105 114	1.0 Special Total	Factor 1.0 High 125 120 120 Conv. Factor 1.0	Flag Ver	3
Analytes Gasoline Range (α,α,α-Trifluorot p-Bromofluorober eq. Sample ID	Code AK101S Organics toluene nzene-2 Test Ci Code S	Resu 988.95 52.50 114.01	Theore Theore Th	tical	Detection Limit 00.0000 11 1.0000 5 1.0000 10 CONTROL k	Spike Value 1.00.000 50.0000 00.0000	1.0 Rec- overy 98.9 105 114 Neight 1.0 Rec-	1.0 Special Total	Factor 1.0 High 125 120 120 Conv. Factor 1.0	Flag Ver	3
Analytes Gasoline Range (α, α, α-Trifluorote) p-Bromofluorober eq. Sample ID 102 CCV	Code AK101S Drganics toluene nzene-2 Test Cl Code S AK102W	Resu 988.95 52.50 114.01 Lass/ Ma	Theore t	tical malue 0000 10000 00000 Seq Seq Sectical I alue	Detection Limit 00.0000 11 1.0000 5 1.0000 10 CONTROL k	Spike Value 1.00.000 10.0000 10.0000 11.00 Spike Value	1.0 Rec- overy 98.9 105 114 Neight 1.0 Rec-	1.0 Special S	Factor 1.0 High 125 120 120 Conv. Factor 1.0	Flag Ver	``
Analytes Gasoline Range (α, α, α-Trifluorote) p-Bromofluorober eq. Sample ID 102 CCV	Code AK101S Drganics toluene nzene-2 Test Cl Code S AK102W	Resu 988.95 52.50 114.01 Lass/ M. Gub/Dup T I Resu.	Theore t	tical malue 0000 10000 00000 Seq Seq Sectical I alue	Detection Limit CONTROL CONT	Spike Value 1.00.000 10.0000 10.0000 11.00 Spike Value	Rec- overy 98.9 105 114 Neight 1.0 Rec- overy	1.0 Specific 1.0 Volume 1.0 Specific 1.0 Specific 1.0 The specific 1.0	Factor 1.0 High 125 120 120 Conv. Factor 1.0	Flag Ver	3

Work Order: A912008 Client: CH2M_HILL

	CONTROL	
	Test Class/ Matrix/ Ref Spk Conv.	
Seq. Sample ID	Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver	
10 102 CCV	AK102W T I W 1.0 1.0 1.0 1.0 JKG	
	Theoretical Detection Spike Rec- Specs	
Analytes	Theoretical Detection Spike Rec- Specs Result Value Limit Value overy Low High	
Diesel Range Org		Y
o-Terphenyl	53.913 50.000 0.050 50.000 108 60 120	Y
	CONTROL Test Class/ Matrix/ Ref Spk Conv.	
Seq. Sample ID	Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver	
12 102 CCV	AK102W T I W 1.0 1.0 1.0 1.0 JKG	
3	Theoretical Detection Spike Rec- Specs	
Analytes	Result Value Limit Value overy Low High	
Diesel Range Org o-Terphenyl		Y
o respicitly s	50.058 50.000 0.050 50.000 100 60 120	Y
	CONTROL	
	Test Class/ Matrix/ Ref Spk Conv.	
Seq. Sample ID	Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver	
19 102 CCV	AK102W T I W 1.0 1.0 1.0 JKG	
	Theoretical Detection Spike Rec- Specs	
Analytes	Theoretical Detection Spike Rec- Specs Result Value Limit Value overy Low High	
Diesel Range Org		Y
o-Terphenyl	52.233 50.000 0.050 50.000 104 60 120	Y
	CONTROL Test Class/ Matrix/ Ref Spk Conv.	
Seq. Sample ID	Code Cult (Dun Only on the Code)	
21 102 CCV	Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver AK102W T I W 1.0 1.0 1.0 1.0 JKG	
	Theoretical Detection Spike Rec- Specs	
Analytes	Result Value Limit Value overy Low High	
Diesel Range Org	73 7123	Y
0-rerphenyr	50.641 50.000 0.050 50.000 101 60 120	Y
	CONTROL	
	Test Class/ Matrix/ Ref Spk Conv.	
Seq. Sample ID	Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver	
24 102 CCV	AK102W T I W 1.0 1.0 1.0 1KG	
	Thornation 1 Debastics and 1	
Analytes	Theoretical Detection Spike Rec- Specs Result Value Limit Value overy Low High	
Diesel Range Orga	TOW III IN	
o-Terphenyl	52.094 50.000 0.050 50.000 104 60 120	Y
	120	Y

Work Order: A912008 Client: CH2M_HILL

BLANK

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 13 MB 1207-1 BTXG8S B P s 25 5 1.0 1.0 SG

		Detection	ı		Sp	ecs	
Analytes	Result	Limit			Low	High	
Benzene	υ	0.0250				:	
Toluene	U	0.0250					
Ethylbenzene	Ŭ	0.0250					
Xylenes, Total	U	0.0250					
Gasoline Range Organics	U	2.5000					
1,4-Difluorobenzene	1244.175	0.0250	1.2500	99.5	60	120	
p-Bromofluorobenzene	2927.675	0.0250	2.5000	117	60	120	
1,4-Difluorobenzene-2	1291.600	0.0250	1.2500	103	60	120	
p-Bromofluorobenzene-2	2672.275	0.0250	2.5000	107	60	120	

SPIKE

Test Class/ Matrix/ Ref Spk

Conv. Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 14 LCS 1207-1 BTXG8S K S 13 s 25 5 1.0 1.0 SG

		Unspiked	Detection	n Spike	Rec-	Sp	ecs	
Analytes	Result	Result	Limit	Value	overy	Low	High	
Benzene	0.3110	U	0.0250	0.3260	95.4	85	115	Y
Toluene	1.8672	U	0.0250	1.9900	93.8	85	115	Y
Ethylbenzene	0.4792	U	0.0250	0.4450	108	85	115	•
Xylenes, Total	2.2405	U	0.0250	2.3350	96.0	85	115	
Gasoline Range Organics	30.9903	ŭ	2.5000	27.5000	113	75	125	
1,4-Difluorobenzene	1.2012	1244.175	0.0250	1.2500	96.1	60	120	
p-Bromofluorobenzene	2.8412	2927.675	0.0250	2.5000	114	60	120	
1,4-Difluorobenzene-2	1.3260	1291.600	0.0250	1.2500	106	60	120	
p-Bromofluorobenzene-2	2.6341	2672.275	0.0250	2.5000	105	60	120	

SPIKE DUPLICATE

Test Class/ Matrix/ Ref Spk Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 15 LCS 1207-2 BTXG8S K S D S 13 14 25 5 1.0 1.0 SG

		Unspiked	Detection	n Spike	Rec-	Sp	ecs	RPD Specs	Referen	ce	
Analytes	Result	Result	Limit	Value	overy	Low	High	Low High	Recover	y RPD	
Benzene	0.3120	U	0.0250	0.3260	95.7	85	115	20		0.314	
Toluene	1.8317	U	0.0250	1.9900	92.0	85	115	20		1.94	-
Ethylbenzene	0.4665	U	0.0250	0.4450	105	85	115	20	108	2.82	•
Xylenes, Total	2.1876	U	0.0250	2.3350	93.7	85	115	20	96.0	2.42	
Gasoline Range Organics	30.9219	U	2.5000	27.5000	112	75	125	20	113	0.889	
1,4-Difluorobenzene	1.1915	1244.175	0.0250	1.2500	95.3	60	120	20	96.1	0.836	
p-Bromofluorobenzene	2.7190	2927.675	0.0250	2.5000	109	60	120	20	114	4.48	
1,4-Difluorobenzene-2	1.3294	1291.600	0.0250	1.2500	106	60	120	20		0	
p-Bromofluorobenzene-2	2.8719	2672.275	0.0250	2.5000	115	60	120	20	-	9.09	

Work Order: A912008 Client: CH2M_HILL

Analytes Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S	Result 49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr	50.0000	Detecti Limit 1.0000 1.0000 1.0000 1.0000 1.0000 CONTROL	Value 13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	1.0 Rec- overy 99.2 94.7 93.1 92.9 103 118	Volume 1.0 Spec Low 85 85 85 60 60 Volume 1.0	1.0 8 High 115 115 115 120 120	r Flag Ver SG	Y
Analytes Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S	Result 49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	Theoretical	Detecti	1.0 Dn Spike Value 13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	1.0 Rec- overy 99.2 94.7 93.1 92.9 103 118	1.0 Spec Low 85 85 85 60 60	E Factor 1.0 8 High 115 115 120 120 Conv	r Flag Ver SG r Flag Ver	
Analytes Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Result 49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	Value 50.0000 50.0000 150.0000 150.0000 100.0000	Detecti	1.0 Dn Spike Value 13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	1.0 Rec- overy 99.2 94.7 93.1 92.9 103 118	1.0 Spec Low 85 85 85 60 60	1.0 8 High 115 115 115 120 120 Conv	SG r Flag Ver	
Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Result 49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	Value 50.0000 50.0000 150.0000 150.0000 100.0000	Limit 1.0000 1.0000 1.0000 1.0000 1.0000 CONTRO	Value 13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	99.2 94.7 93.1 92.9 103 118	Low 85 85 85 60 60	High 115 115 115 120 120 Conv	r Flag Ver	
Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Result 49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	Value 50.0000 50.0000 150.0000 150.0000 100.0000	Limit 1.0000 1.0000 1.0000 1.0000 1.0000 CONTRO	Value 13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	99.2 94.7 93.1 92.9 103 118	Low 85 85 85 60 60	High 115 115 115 120 120 Conv	r Flag Ver	
Benzene Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	49.5940 47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su	50.0000 50.0000 150.0000 50.0000 100.0000	1.0000 1.0000 1.0000 1.0000 1.0000 CONTROL	13.0400 79.6000 17.8000 93.4000 50.0000 100.0000	99.2 94.7 93.1 92.9 103 118 Weight	85 85 85 60 60	115 115 115 120 120 Conv	r Flag Ver	
Toluene Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	47.3740 46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	50.0000 50.0000 150.0000 50.0000 100.0000	1.0000 1.0000 1.0000 1.0000 1.0000 CONTROL	79.6000 17.8000 93.4000 50.0000 100.0000	94.7 93.1 92.9 103 118 Weight	85 85 85 60 60	115 115 120 120 Conv	r Flag Ver	
Ethylbenzene Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	46.5570 139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	50.0000 150.0000 50.0000 100.0000	1.0000 1.0000 1.0000 1.0000 CONTROL	17.8000 93.4000 50.0000 100.0000	93.1 92.9 103 118 Weight 1.0	85 85 60 60	115 120 120 Conv	r Flag Ver	Y
Xylenes, Total 1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	139.2870 51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	150.0000 50.0000 100.0000 fix/ Ref S ub Seq S	1.0000 1.0000 1.0000 CONTROL pk eq D	93.4000 50.0000 100.0000	92.9 103 118 Weight 1.0	85 60 60 Volume	115 120 120 Conv	r Flag Ver	
1,4-Difluorobenzene p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	51.3500 117.7730 Class/ Matr Sub/Dup Su T I S	50.0000 100.0000 Fix/ Ref S ub Seq S	1.0000 1.0000 CONTROI pk eq D:	50.0000 100.0000	103 118 Weight 1.0	60 60 Volume	120 120 Conv	r Flag Ver	
p-Bromofluorobenzene Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	117.7730 Class/ Matr Sub/Dup Su T I S	100.0000 rix/ Ref S ub Seq S	1.0000 CONTROL pk eq D	100.0000	118 Weight 1.0	60 Volume	120 Conv	r Flag Ver	
Test Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Class/ Matr Sub/Dup Su T I S	rix/ Ref S ub Seq S	CONTRO Pk eq D	lution 1.0	Weight	Volume	Conv Factor	r Flag Ver	
Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Sub/Dup Su	ub Seq S	pk eq D	llution 1.0	1.0		Facto	r Flag Ver	
Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Sub/Dup Su	ub Seq S	pk eq D	llution 1.0	1.0		Facto	r Flag Ver	-
Seq. Sample ID Code 11 8020 CCV BTX_8S Analytes Benzene	Sub/Dup Su	ub Seq S	eq D:	1.0	1.0		Facto	r Flag Ver	
11 8020 CCV BTX_8S Analytes Benzene	ті ѕ	•		1.0	1.0			_	
Analytes Benzene	7	Theoretical	Detection			1.0		_	
Benzene		Theoretical	Detection	m Caile	_				
Benzene		Theoretical	Detection		_				
Benzene	Result			м гртке	Rec-	Spece	3		
		Value	Limit	Value	overy	Low 1	ligh		
	45.2620	50.0000	1.0000	13.0400	90.5	85	115		Y
Toluene	46.8670	50.0000	1.0000	79.6000	93.7	85	115		Y
Ethylbenzene	46.1440	50.0000	1.0000	17.8000	92.3	85	115		
Xylenes, Total	137.9260	150.0000	1.0000	93.4000	92.0	85	115		
1,4-Difluorobenzene	50.4650	50.0000	1.0000	50.0000	101	60	120		
p-Bromofluorobenzene	115.3810	100.0000	1.0000	100.0000	115	60	120		
			CONTROL						
Test (Class/ Matr	ix/ Ref S					Conv.		
Seq. Sample ID Code	Sub/Dup Su	b Seq Se	eq Di	lution V	Weight	Volume	Factor	Flag Ver	
17 8020 CCV BTX_8S	T I S	-	-	1.0	1.0	1.0	1.0	SG	
	T	heoretical	Detection	n Spike	Rec-	Specs			
Analytes	Result	Value	Limit	Value	overy	Low H	igh		
Benzene	48.3390	50.0000	1.0000	13.0400	96.7	85	115		Y
Toluene	47.3040	50.0000	1.0000	79.6000	94.6	85	115		Y
Ethylbenzene	46.5540	50.0000	1.0000	17.8000	93.1	85	115		
Xylenes, Total	138.6080	150.0000	1.0000	93.4000	92.4	85	115		
1,4-Difluorobenzene	50.2730	50.0000	1.0000	50.0000	101	60	120		
p-Bromofluorobenzene	115.6300	100.0000	1.0000	100.0000	116	60	120		

Work Order: A912008 Client: CH2M_HILL

BLANK Test Class/ Matrix/ Ref Spk Conv. Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver MB1 1207 DRRROS B P s 1.0 24.410 1.0 1.0 JKG Detection Specs Analytes Result Limit Low High Diesel Range Organics U 4.10 Residual Range Organics U 8.19 Υ o-Terphenyl 42.540 0.002 2.048 85.1 60 120 Squalane 45.301 0.002 2.048 90.6 60 120 SPIKE Test Class/ Matrix/ Ref Spk Conv. Seq. Sample ID Sub/Dup Seq Seq Sub Dilution Weight Volume Factor Flag Ver K912008-08K DRRROS КМ s 6 1.0 26.046 1.0 1.0 JKG Unspiked Detection Spike Rec-Specs Analytes Result Result Limit Value overy Low Diesel Range Organics 89.51 U 4.42 88.46 101 60 120 Y Residual Range Organics 106.47 23.09 8.85 88.46 94.3 60 120 Y o-Terphenyl 1.780 2.031 0.002 2.212 80.5 120 60 Squalane 1.866 2.152 0.002 2.212 84.4 60 120 SPIKE DUPLICATE Test Class/ Matrix/ Ref Spk Conv. Seq. Sample ID Sub/Dup Code Sub Seq Seq Dilution Weight Volume Factor Flag Ver K912008-08K DRRROS K M D s 6 1.0 25.765 1.0 1.0 JKG Unspiked Detection Spike Rec-Specs RPD Specs Reference Analytes Result Result Limit Value overy Low High Low High Recovery RPD Diesel Range Organics 85.37 U 4.47 89.43 95.5 60 120 20 101 5.60 Residual Range Organics 105.69 23.09 8.94 89.43 92.4 60 120 20 94.3 2.04 Y o-Terphenyl 1.769 2.031 0.002 2.236 79.1 60 120 80.5 1.75 Squalane 2.083 2.152 0.002 2.236 93.2 60 120 84.4 9.91 SPIKE Test Class/ Matrix/ Ref Spk Conv. Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver LCS1 1207 DRRROS K S s 3 1.0 25.094 1.0 1.0 JKG Unspiked Detection Spike Rec-Specs Analytes Result Result Limit Value overy Diesel Range Organics 79.16 U 3.99 79.70 99.3 60 120 Y Residual Range Organics 71.18 U 7.97 79.70 89.3 60 120 Y o-Terphenyl 1.599 42.540 0.002 1.993 80.2 60 120 Squalane 1.840 45.301 0.002 1.993 92.3 120

Work Order: A912008 Client: CH2M_HILL

			SPIKE DUP	LICATE							•
Test	Class/ Matrix	/ Ref Sp	k			:	Conv.				
Seq. Sample ID Code	Sub/Dup Sub	Seq Se	g Dilu	tion W	Veight	Volume	e Factor	Flag V	er		
5 LCSD1 1207 DRRRO	s ksd s	3 4			1.383	1.0	1.0	_	KG		
							•	0.			
	U	nspiked	Detection	Spike	Rec-	Spec	cs RPD	Specs 1	Referen	ce	
Analytes	Result	Result	Limit	Value	overy	Low I	High Low	/ High	Recover	y RPD	
Diesel Range Organics	85.54	U	4.10	82.02	104	60	120	20	99.3	4.62	Y
Residual Range Organics	80.28	U	8.20	82.02	97.9	60	120	20	89.3	9.19	
o-Terphenyl	1.725	42.540	0.002	2.051	84.1	60	120		80.2	4.75	
Squalane	2.133	45.301	0.002	2.051	104	60	120		92.3	11.9	
	-										
			CONTROL								
Test	Class/ Matrix,	/ Ref Sp	k				Conv.				
Seq. Sample ID Code	Sub/Dup Sub	Seq Se	q Dilu	tion W	eight	Volume	Factor	Flag Ve	er		
2 103 CCV RRO_W	T I W		1	. 0	1.0	1.0	1.0	J	(G		
	The	oretical :	Detection	Spike	Rec-	Spece	3				
Analytes	Result	Value	Limit	Value	overy	Low F	ligh				
Residual Range Organics	1159.83	1000.00	200.00 1	000.00	116	75	125				Y
Squalane	53.397	50.000	0.050	60.000	107	60	120				Y
											-
			CONTROL								
Test	Class/ Matrix/	Ref Spl	k "				Conv.				
Seq. Sample ID Code	Sub/Dup Sub	Seq Sec	g Dilut	tion W	eight	Volume		Flag Ve	r		
11 103 CCV RRO_W	T I W		_	. 0	1.0	1.0	1.0	JK			
									.0		
	Theo	retical I	Detection	Spike	Rec-	Specs	I				
Analytes	Result	Value	Limit	Value	overy	- :	ligh				
Residual Range Organics	1175.44	.000.00	200.00 10	00.00	118		125				Y
Squalane	53.889	50.000		50.000	108		120				
						:	120				Y
							***	******			
			CONTROL			i					
Test	Class/ Matrix/	Ref Spk					Conv.				
Seq. Sample ID Code	Sub/Dup Sub	Seq Sec		ion W	eight	Volume		173 ner 17a	_		
13 103 CCV RRO_W	T I W		1.		1.0	1.0	1.0	Flag Ve			
			1.			1.0	1.0	JK	G.		
	Theo	retical F	Detection	Snike	Pec-	Specs					
Analytes	Result	Value		Value Value							
Residual Range Organics		00.00	* -	00.00		Low H					
Squalane	53.668	50.000			119	1	125				Y
	33.000	50.000	0.050 6	0.000	107	60	120				Y

Work Order: A912008 Client: CH2M_HILL

				CONTROL	,					-
	Test	Class/ Mat	rix/ Ref S	pk				Conv.		
Seq. Sample ID	Code	Sub/Dup S	ub Seq S	eq Di	lution 1	Weight	Volum		Flag Ver	
20 103 CCV	RRO_W	T I W	_	_	1.0	1.0	1.0	1.0	JKG	
			Theoretical	Detectio	n Chika	Dog	9	_		
Analytes		Result	Value	Limit	n spike Value		Spec			
Residual Range (Organics	1186.56	1000.00	200.00	1000.00	overy 119		High		
Squalane	21 34105	52.483	50.000	0.050	60.000		75	125		Y
- 4		32.463	50.000	0.050	60.000	105	60	120		Y
				CONTROL						
	Test	Class/ Mat	rix/ Ref S	pk				Conv.		
Seq. Sample ID	Code	Sub/Dup Si	ıb Seg Se	-	lution V	N eight	Volum		Flag Ver	
22 103 CCV	RRO W	TI W	•	-	1.0	1.0	1.0	1.0	JKG	
									51.0	
		1	Cheoretical	Detectio	n Spike	Rec-	Speci	3		
Analytes		Result	Value	Limit	Value		- 1	High		
Residual Range C	rganics	985.81	1000.00	200.00	1000.00	98.6	75	125		Y
Squalane		46.911	50.000	0.050	60.000	93.8	60	120		
						20.0		120		Y
				CONTROL						···
	Test	Class/ Matr	ix/ Ref Sp	ok				Conv.		
Seq. Sample ID	Code	Sub/Dup Su	b Seq Se	eq Di	lution W	leight	Volume	Factor	Flag Ver	
25 103 CCV	RRO_W	T I W			1.0	1.0	1.0	1.0	JKG	
3			heoretical			Rec-	Specs	;		
Analytes		Result	Value	Limit	Value	overy	Low F	ligh		
Residual Range O	rganics	822.99	1000.00	200.00	1000.00	82.3	75	125		Y
Squalane		42.709	50.000	0.050	60.000	85.4	60	120		Y

Support Documentation

811 W. 8th Ave. Anchorage, AK 99501 (907) 258-2155 FAX: (907) 258-6634

5438 Shaune Drive Juneau, AK 99801 (907) 780-6668 FAX: (907) 780-6670

325 Interlocken, Pkwy. Ste. 200
Broomfield, Colorado 80021
(303) 469-8868
FAX: (303) 469-5254

LGN: A912008 Quote:

Company Name Project	Name	O	Chain c	in of Custody		Record /	Record /	4 -	Analysis	1 1) Be	Request
Company Address 4/0/15 4/0/18	Report To: COLL Invoice To:	६६८ ३०६५			K103AA		124 6,	10 4 - AE				Asis.
278-2551	MUMPIN I	# Containers	<i>209</i>	10 02 50		170	501	37				PUV IA
77. 5736 Sample ID	Date Collecto		ATEX by EPA TAH by EPA AGH by EPA	3HO by AK10 3HO by AK10 3HO by AK10	1+A by AK 10 1+A by AK 10	Ther (Specify	1/201	(1/9 7	101		Z>H	lold for Furth AB ID
	12.1 1015 PRINT			7))	! ×	7				
	1 0201	-					25	+	200) 86B		
	5201						*					
704	№ 97.01 						بو .					
	1050501	. 2				*	¥					5
	IIIO PAR	-						メ				
	1055 %	2				*	7					02
	1150 AL							7				
	25, 622	-				*	4					60
	7221	2				*	٧-					ठ
	1230	7				*	7					05
	№ 1.55.3	7				+	ナ					9
7	1		<u>-</u>	DELIVERABLES		Q			2	TURNAROUND	9	
3 2	BOCAIC	DATARELL	ÿ	☐ Level 1		STD		☐ 2 Busir ☐ 5 Busir ☐ 0-15 E	☐ 2 Business Days ☐ 5 Business Days ☐ 6 Business Days ☐ other: ☐ #Business Days	lays #Busine	ss Days	
RELINQUISHED BY SAMPLER: RECEIVED BY:	ED BY:	RELINQUISHED BY:	نذ	RECEIVED	BY:			Cooler F	Cooler Receipt Information	formation		
Signatture	June June	Signature;	7	Signature:				Temp Re	Temp Received:	<u>~</u>	ړ	
MALLESTAD ON a	lame: Drennan	ara [Treman	Printed Name.				Temp Receive # of Coolers:	90	CAR	ပ္စ	
Firm: AA		Firm: AA (Firm:				Seals: K		delive	ivered	
Date/Time Date/Time	13/49 1030	Date/Time: 12/5/99	1130	Date/Time:				Couner ree: \$ Airbill #	\$.89.			,
		•	<u>;</u>				-			PAGE	J.	97.6

ANALYTICA ALASKA INC.

811 W. 8th Ave. Anchorage, AK 99501 (907) 258-2155 FAX: (907) 258-6634

5438 Shaune Drive Juneau, AK 99801 (907) 780-6668 FAX: (907) 780-6670

325 Interlocken, Pkwy. Ste. 200
Broomfield, Colorado 80021
(303) 469-8868
FAX: (303) 469-5254

LGN: A912,008

Quote:

Hebort To: COLLEGA BUE Hebort To: COLLEGA BUE P.O. Number: P.O. Number: LIVI 1345 St. 1 12.1 1345 St. 1 12.1 1345 St. 1 LIVI 1345 St. 1 RECEIVED BY: RELINQUISH Signature Signature Signature Signature Firm: A A I Date/Time: Project Name ## 1	Chain of Custody Record / Analysis Request	7.34-		0 to 1	у төци	2 (O)	iloH PHd	5	2	8					TURNAROUND		M40-15 Business Days ☐ other: #Business Days	Cooler Receipt Information	Temp Received: 3.: °C	Temp Received: °C	seals: hand delivered	Courier Fee: \$
Project Name Report To: Lollected Bull 13 LL PA Invoice To: Lollected Time Collected Time Collected Law 1340 L IL. 1345 St. 1240 L	Custody Re		AAEOI		(1054) K103 K103	A yd Of A yd Of IA yd A IA yd A	НО '+A											RECEIVED BY:	Signature:	Printed Name:	Firm:	Date/Time:
M.analyticagroup.com Project Name 1 (LL Heport To: Collected To: And Tell 1255 P.O. Number: #C 1257 P.O. Number: #C 1250 P.O. Number: #C	Chain of		818		502 A93 503 A9	Н РУ ЕІ	AT AT											NQUISHED BY:	Q	0	141	
W.analyticagroup.co W.analyti	E		Coulded	J. Number:	bətəə xi	lloO əm		1345 562	Z Z	7 0551 V							江口山下的	HELLI		,	Firm	Date Date
All Sample Sampl	w.analyticagroup.cor		 	L		···			14						20 7 V	5			Signature:	0	Fim: AAI	

Analytica Alaska Inc.

811 W. 8th Ave Anchorage, Alaska 99501 (907) 258-2155 (907) 258-6634 fx (ADEC UST-014)

Sample Cooler Receipt Form

Laboratory Group Number (LGN):	A91	2008				:				
Date Cooler Opened:		3/99				1				
Recipients Initials:	Tio									
Client Name:		ZM H	111			;				
Project Name:		G P								
		Cooler			Coole	· #2			Coole	- #2
Cooler Exam	Yes	No	Specify Temp. (4°C*/-2°C):	Yes	No	Specify Temp. (4°C*/-2°C):	l [Specify Temp.
Cooler Temperature Acceptable?		-	3.1	163	110	(40720).	} }	Yes	No	(4°C*/-2°C):
Custody Seals Acceptable?						<u> </u>	' -		 	
Airbills / Delivery Acceptable?						1	-		<u> </u>	1
CoC Included With Cooler?]			1	<u> </u>			
Sample Containers Exam	Yes	No		Yes	No]	Ī	Yes	No]
Sample Condition Acceptable?							<u> </u>		''-	ļ
Correct Sampling Containers?						1	r			ĺ
Correct Sampling Preservative?							F			
Sufficient Sample Volume?	/						-			
Containers Identified Correctly?					<u> </u>		-	 		
Chain of Custody (CoC) Exam	Yes	No		Yes	No			'es	No	
Project Identifiable From CoC?						:	'	<u> </u>	140	
Signatures/Dates/Times Correct?							-			
Sample Bottles/CoC Correspond?						!				
Discrepancy Resolution										
Client Contact & Company:										
Date Contacted:										
Discrepancy:										
Resolution:										
						:				

Appendix B GPS Survey

			Horizontal NAD 27		
	Vertical NAVD88	NAVD88	Coors Northing (US	Horizontal NAD 27 Coors	
Point	Elevations	tions	Survey Foot)	Easting (US Survey Foot)	Description
	91	67.582	1189201.448	3118033.875	Survey base station benchmark
	88	87.002	1178808.357	3128347.772	Site 33B, stake A1100 DD2-SO
	88	83.462	1178645.325	3128322.049	Site 33B, monitoring well A4000 MW1
	87	83.961	1178713.629	3128303.814	Site 33B, stake A4000 SW/SE2
	98	84.032	1178701.873	3128291.742	Site 33B, stake A4000 SO6
	82	84.886	1178679.92	3128283.967	Site 33B, sample location 33B99SD13
	84	84.318	1178700.238	3128248.39	Site 33B, stake A4000 SW/SE1 (sheen on water)
	83	85.051	1178702.233	3128263.458	Site 33B, stake A4000 SO5
	82	90.916	1178784.946	3128291.083	Site 33B, east firing range
	81	89.858	1178657.119	3127871.623	Site 33B, fork intersection
	80	87.407	1178316.583	3128028.029	Site 33B, stake A5000 SW1
	79	89.262	1178237	3127892.144	Site 33B, stake A1100 DD3
	78	88.153	1178312.653	3127857.208	Site 33B, stake A5000 SO2
	11	106.37	1177342.448	3123754.302	Site 72, miscellaneous hangar PCB runoff points by boiler building
	9/	104.935	1177238.471	3123782.337	Site 72, miscellaneous hangar PCB runoff points by boiler building
	75	104.984	1177248.638	3123764.5	Site 72, miscellaneous hangar PCB runoff points by boiler building
	74	105.758	1177275.582	3123758.389	Site 72, miscellaneous hangar PCB runoff points by boiler building
	73	105.991	1177308.679	3123748.17	Site 72, miscellaneous hangar PCB runoff points by boiler building
					Site 72, miscellaneous hangar PCB runoff points by boiler building and
	72	106.715	1177300.954	3123788.167	background field screen location
	71	106.702	1177280.831	3123818.212	Site 72, miscellaneous hangar PCB runoff points by boiler building
	20	107.056	1177311.809	3123809.948	Site 72, miscellaneous hangar PCB runoff points by boiler building
	69	106.797	1177303.268	3123826.415	Site 72, miscellaneous hangar PCB runoff points by boiler building
	89	108.256	1177280.365	3123872.913	Site 72, miscellaneous hangar PCB runoff points by boiler building
	29	108.219	1177300.561	3123861.452	Site 75, road west of hangar
	99	107.277	1177302.593	3123899.651	Site 75, miscellaneous hangar PCB runoff points
	65	107.699	1177317.446	3123886.688	Site 75, miscellaneous hangar PCB runoff points
	64	107.426	1177357.321	3123880.4	Site 75, miscellaneous hangar PCB runoff points
	83	106.489	1177416.975	3123921.087	Site 75, miscellaneous hangar PCB runoff points
	62	106.82	1177386.172	3123892.594	Site 75, miscellaneous hangar PCB runoff points
	61	107.144	1177370.059	3123904.48	Site 75, miscellaneous hangar PCB runoff points
	09	105.237	1177519.429	3124267.742	Site 75, miscellaneous hangar tarmac points
	29	104.943	1177555.921	3124276.692	Site 75, miscellaneous hangar tarmac points
	58	104.749	1177589.654	3124254.767	Site 75, miscellaneous hangar tarmac points
	22	104.377	1177622.24	3124226.669	Site 75, miscellaneous hangar tarmac points
	26	103.651	1177691.039	3124235.487	Site 75, miscellaneous hangar tarmac points
	55	103.605	1177695.366	3124281.785	Site 75, miscellaneous hangar tarmac points
	54	103.115	1177731.966	3124312.94	Site 75, miscellaneous hangar tarmac points

			Horizontal NAD 27		
	Vertical NAVD88	ပိ	s Northing (US	Horizontal NAD 27 Coors	
Point	Elevations		Survey Foot)	Easting (US Survey Foot)	Description
		102.58	1177804.241	3124350.74	Site 75, miscellaneous hangar tarmac points
		102.491	1177834.769	3124273.712	Site 75, miscellaneous hangar tarmac points
	•	102.625	1177812.518	3124231.507	Site 75, miscellaneous hangar tarmac points
	•	02.982	1177809.849	3124169.622	Site 75, miscellaneous hangar tarmac points
	49 102	102.724	1177799.311	3124116.619	Site 75, miscellaneous hangar tarmac points
		103.554	1177765.001	3124081.214	Site 75, miscellaneous hangar tarmac points
	47 103.	103.746	1177742.066	3124033.504	Site 75, miscellaneous hangar tarmac points
	46 104.662	662	1177665.492	3124014.631	Site 75, miscellaneous hangar tarmac points
	45 10	104.92	1177631.984	3124062.198	Site 75, miscellaneous hangar tarmac points
		105.074	1177591.067	3124106.393	Site 75, miscellaneous hangar tarmac points
		105.418	1177561.715	3124133.918	Site 75, miscellaneous hangar tarmac points
	42 105.	105.302	1177560.828	3124177.611	Site 75, miscellaneous hangar tarmac points
	41 105.	105.615	1177522.661	3124195.192	Site 75, miscellaneous hangar tarmac points
	•	105.952	1177466.654	3124183.493	Site 75, miscellaneous hangar tarmac points
	39 106.281	281	1177436.905	3124160.475	Site 75, miscellaneous hangar tarmac points
	•	106.805	1177442.997	3124094.658	Site 75, miscellaneous hangar tarmac points
	•	106.566	1177478.689	3124051.367	Site 75, miscellaneous hangar tarmac points
	_	105.819	1177536.141	3124062.223	Site 75, miscellaneous hangar tarmac points
		105.78	1177567.474	3124006.473	Site 75, miscellaneous hangar tarmac points
	34 106.337	337	1177536.386	3123972.956	Site 71A, NE corner, hangar vehicle pad
	•	101	1177165.157	3123997.504	Site 75, hangar SW corner
		105.115	1177227.693	3123843.51	Site 72, SW corner of boiler building #24
	31 106.	106.918	1177187.375	3123902.452	Site 74, sample location 7499SL09
	-	941	1177197.257	3123887.813	Site 74, 5 feet due north of sample location 7499SL11
	•	06.412	1177285.253	3123809.775	Site 72, approximate former transformer location
	•	837	1177616.08	3123665.512	Site 68, NW corner
	•	109.014	1177610.73	3123669.353	Site 68, sample location 6899PT07
		723	1177595.353	3123671.263	Site 68, SW corner
	25 110.	10.838	1177445.99	3123515.856	Site 69A, sample location 69A99SL06
	_	08.759	1177473.484	3123579.648	Site 69A, sample location 69A99SL06
	_	10.194	1177522.447	3123570.017	Site 69A, NNW corner
	•	08.886	1177541.89	3123631.106	Site 69A, sample location 69A99SL05
	•	109.935	1177536.993	3123626.661	69A,
	*	10.448	1177489.956	3123688.871	Site 69A, ENE corner
		38.295	1186767.917	3129273.164	Site 47A, stake PC-03
	17 38.	38.825	1186776.485	3129287.525	Site 47A, stake PC-05
	16 44.	44.821	1186964.894	3129292.923	Site 47A, entrance to parking circle.
	15 40.	40.748	1187421.64	3128860.992	Site 44, USCG housing AST saddles.

USCG Annette Island PA GPS survey coordinates

		Horizontal NAD 27		
	Vertical NAVD88	Coors Northing (US	Horizontal NAD 27 Coors	
Point	Elevations	Survey Foot)	Easting (US Survey Foot)	Description
	14 35.097	1187594.414	3128933.255	Site 40, Southwest corner of oil/water separator.
	12 22.46	1188024.55	3129223.283	Site 44, approximate USCG housing UST location.
	11 23.598	1187923.254	3129109.004	Site 44, approximate USCG housing UST location.
				Site 45A, sample location 45A99SL15. X, Y only. Z is about 2 feet below
	10 25.542	1187776.408	3128906.707	survey elevation.
	9 21.243	1187257.085	3128125.67	Site 44, a USCG housing corner.
	8 22.569	1187522.684	3128596.713	Site 44, a USCG housing corner.
	7 30.742	1187408.13	3128655.963	Site 44, a USCG housing corner.
	6 48.326	1187144.089	3128849.332	Site 46, firestation pipe cap.
	5 49.808	1187172.79	3128792.955	Site 46, northwest corner of the firestation.
	4 45.187	1187173.212	3128798.425	Site 46, sample location 4699SL14.
	3 47.5	1187165.37	3128844.877	Site 46, northeast corner of the firestation.
	2 27.235	1186878.81	3131137.772	FAA point. FAA gas station survey monument
	1 107.625	1177340.721	3124133.734	FAA point. Estimated center point of hangar door
ANNE USCG B	GB 67.59	1189201.432	3118033.853	

		•	

Appendix C Figures and Table from Annette Island Brownfields Investigation

START Sample ID BG01SS EPA Sample ID 98234373 Sample Location Background VOCs (tgARg) 1.2.4 Timethyl NA Bengency Hobitone Control of the Cont	MICS	ă IIIIIIIII	FAAI	AA HAN IPLES A NETTE	FAA HANGAR FACHATY SAMPLES ANALYTICAL RES ANNETTE ISLAND, ALASKA	FAA HANGAR FACILITY SURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA	UMMARY			
D)	MIC S Clean Love	Regional Residential PRG	Re Indus							
DIA CHIZENE CH	Clean Leve	Residential PRG 48 48 48 48 48 48 48 48 48 48 48 48 48	Heggin Industribution Ph		Alaska Soil	HAOISS	HA02SS	HA03SS	HB01SS	HB02SS
on cuzene cuzene cuzenhyl- ne		48 48 14,00			Cleanup Levels*	98234381	98234382	98234383	98234388	98234389
enzene medhyl- ne		48 48 4100				Hangar Building	Hangar Building	Hangar Building	Boiler Building	Boiler Building
enzene anethyl nc		2 2 2 14,00				The second second	327 - W - 1886 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 11
nnethyl		27. 27. 14,00		0000	1.700	٧V	NA	NA	4 5 1111.	5.2 UJK
110		23.7		170,000		٧Z	٧V	NA	220	2.6 UJK
SVOCs (ue/ke)		23 27 14.00				٧¥	ΑN	NA	2.2 U	2.6 UJK
		27.00.114.00):			100				
cuzcuc		14.00		1,700,000	1,700	NA A	٧V	NA	U 7£1	152.0
4-Methylphenol NA	- 1	14,00		5,300,000		NA	NA	NA	137 U	152 U
	•		220,00	0.000	3,900,000	Ϋ́	NA	NA	U 7E1	152.0
cnc		1		3,600	5,500	NA	NA	NA	79.4 JQ	152 13
		' '	56	360	2,400	NA	NA	NA	94.5 JQ	152.0
						NA	NA	NA	102 JQ	305 U
			560	3,600	17,000	٧×	NA	NA	U 7E1	152 U
Benzolk fluoranthene NA	,	15.		36,000	000'071	ΥN	NA AN	٧×	137 (1	152 U
Benzoic acid . NA	,	100,000,000	00	0.000	350,000	NA	NA	AN A	1370 (1	1520 U
Bis(2-ethylbexyl) philialate NA	'	32,		210,000	1,100,000	NA	NA	NA	0 83	762 13
Chrysene	•	56.		360,000	550,000	NA	NA	٧٧	112 JQ	152 U
Dimethylphthalate	•	100,000,000	000,000,000	000'0	1,200,000	NA	NA	۷¥	U 781	152 U
Di-n-Butytphthalate NA			_	0.000	15.000,000	NA	NA	ΝA	152	152.11
	8,000,000	2,000	37.00	0.000	1,900,000	NA	ΥV	νγ	S6.3 JQ	152.0
3-са)ругене				3,600	20,000	Ϋ́	NA VA	V.	267	152 U
			_	3,200,000	2,600	٧V	Y.	NA	137 U	152 U
-	30,000		95,000	000'061	38,000	NA	VΑ	AN	137 U	152 U
	•		•			ΝΑ	ΥV	NA	137 U	152 U
Naphthalene, 2 methyl	,				,	٧V	VV	ΥN	137 (1	152.0
threne	•					ΝA	NA	NA	137 (1	152 U
Pyrene	•	1,500,000		26.000,000	1,400,000	NA	NA	ΝΑ	89.2 J.Q	152 U
Retenc						٧٧	NA	NA	137 (1	152 U
Alaska Methods (nig/kg)						1,21			72	
Toluciic			520	520	4.8	٧X	٧X	٧Z	U 60.0	0.046 U
m.p.Xylenes NA		320	210	210	69	٧Z	¥Z	Ϋ́Α	0.039 U	0 092 U
o Xylene NA			280	280	69	ΥN	ΥN	Ϋ́	0 039 11	0 046 U
GRO		٠			560	٧٧	¥Z	Ϋ́	U 6:1	23.0
DRO (nC10- <nc25) na<="" td=""><td>'</td><td></td><td></td><td></td><td>230</td><td>NA</td><td>ΝA</td><td>NA</td><td>230</td><td>7,200</td></nc25)>	'				230	NA	ΝA	NA	230	7,200
RRO (nC25-nC36) NA	•				9,700	٧V	Ϋ́	ΝA	530	950

			1180288	98234389	Boiler Building		7,330	2.8	36.5	0.21	1.25 UJ	2,130	136	48.2	29.4	31,900	206	87.000	200	0.0407	420	200	0.75.U	151	16.1	134	1 (2 to 1)	131			0.5	0.5	2 2	30 U	
			1180155	98234388	Boiler Building		7,410	2.05	56.9	0.2	0.74 UJ	3,020	49	23.9	44.5	22,100	137	42,100	308	0.218	196	864	0.3 U	208	21:9	172		140	200	3,6	180	27.01	27.0	1,100	
			IIA03SS	98234383	Hangar Building	in.	9,780	2.36	209	0.16	0 72 UJ	6,310	98.3	16.4	70.8	30,700	124	51,400	244	0.161	158	620	0.67	70.	16.3	673	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	3,300	979	5,200	36 U	26 U	36 U	
	UMMARY	1140366	C6217C190	78534387	Hangar Building		8,130	3.06	51.4	0.18	1.55 UJ	2,670	69.7	31.5	29.3	27,800	246	000,09	389	0.077	267	917	0.15 U	2	63.5	2	3:	1.4 U	92	4.6	61	28 U	28 U	84	
	FAA HANGAR FACILITY SURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA	HADISE	18271438	00000	uilding	X	6,770	-	29.5	0.11	0.78 UJ	2,000	=	79.3	18.8	45,400	251 J	16,100	792	0.02%	67	200	0.73 0	3		70.7	The state of the s	2.8 U	3.8 U	3.2 U	39 U	29 U	120	2,000	
Table 3-11	FAA HANGAR FACILITY AMPLES ANALYTICAL RES ANNETTE ISLAND, ALASKA	·	Cleanup	Levels		THE PARTY OF THE P		8.1	782	97	-		77	•			3			- -			1	2001	2 .	a, Iuu	Section of the sectio	3,000	42,000	130,000	80,000	1,000	000'1	000'1	
	FAA I SOIL SAMPLE ANNET	EPA	Region 9 Industrial Soil	PRG		000		000000	3.400	010	200		200	000'02	00,00	000'001	90,1		000,00	1		9 400		13.000	000	200	1000 61	DO:71	000'61	3,000	13,000	1,300	000'81	1,300	
	SURFACE		Region 9 Residential Soil	PRG		75,000	81.0	0.000 \$	081	37		010	1	08.0	27,000	00,27		01.0	33	2005		370		520	22 000			90,	7.400	3	90/-	002	0.6	007	
		MIC Soil	Cleanup			ŀ						-				000		ŀ								10世最大	Į.						1		
		BCOISS	98234373	Backeround		28,200	5.07	79.2	0.38	0.2 U	1,740	18.9	12.6	108	30,400	2.95	10,400	272	0.0578	9.21	3,040	0.82	249	96.2	39.8		¥	ž	¥N	2	2	ž ž	Ž		
		START Sample ID	EPA Sample ID	Sample Location	Inorganics (mg/kg)	Alamanum	Alsenic	Hamm	Berythun	Cadmium	Calcium	Стопичи	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Родъения	Selenium	Sodium	Variadium	Zinc	Pest/PCBs (ug/kg)	Gannia-Chlordane	000 40	- GOG	P. DOT	CFC1-8-X	ICB-1254	PCB-1260	Key at the caud of the table.	

			iails	FACE SOIL SA	FAA HANG	FAA HANGAR FACILITY					
			**************************************	V	MPLES AN	SURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAM, ALASKA	ULTS SUMMA	RY			
START Sample ID	BG01SS	MIC Soil	EPA Danion 0	EPA	Alaska Soil	HB03SS	HB04SS	HB05SS	HC01SS	HC02SS	SSIOGII
:PA Sample ID	98234373	Cleanup	Residential Soil	Industrial Soil	Cleanup Levels*	98234390	98234391	98234367	98234396	98234397	98234400
Sample Location	Background		ראט	אַר		Boiler Building	Boiler Building	Boiler Building	Concrete	Concrete	Mo one Crutica
VOCs (ug/kg)			180 May		意を子る	· 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	All and the last		100 mm	T CONTINUE TO	WO Kas atamon
2,4-Trichlorobenzene	Y.		480,000	1,700,000	1,700	5.1 U	11f E.72	53.0	066	0.8	4413
Benzene, 1,2,4 tomethyl-	¥Z		51,000	170,000		2.6 U	4.1 JH	261)	n 6 7	10.4	220
ı isojaupyltalucue	٧×					2.6 U	S.5 JH	261)	49 U	5.4	2.2 U
SVOCs (µg/kg)					STAR CHARA	《经验》12次57年	13 to 25 18 18 18 18 18 18 18 18 18 18 18 18 18				
2.4 Trichlorobenzene	٧×		480,000	1,700,000	1,700	158 U	268	166 U	155 U	225 11	136 U
4 Methylphenol	Y.V		270,000	5,300,000	•	158 U	144 U	1991	155 U	509	136 U
Anthracene	V.	-	14.000.000	220,000,000	3,900,000	158 U	144 UJK	166 U	155 U	225 U	136 11
Henzo(a)anthracene	YZ :		260	3,600	5,500	158 U	961	1991	155 U	225 11	136 11
nenzukapytene	٧×	3	26	360	2.400	158 U	144 ()	11 991	155 U	225 11	136 11
Benzoig, B. Dperyiene	Y.					316 U	288 U	331 U	311 U	449 13	273 U
Benzolo Jr Buoranthene	YN :		260	3,600	17,000	158 U	490	166 U	155 U	225 U	136 U
isenzoj k ji tuoranimene	YZ :		2,600	36,000	170,000	158 U	202	166 U	155 U	225 U	136 U
Delizate acid	٧×		100,000,000	100,000,000	350,000	1.580 U	1,440 U	0/9'1	1,550 U	2,250 U	1,360 U
Denema Computer Ayr) primarate	٧.		32,000	210,000	1.100,000	790 U	U 617	828 U	2,020	1,170	682 U
The years	4		000'95	360,000		158 U	424	166 U	155 U	225 U	136 U
Diesemyrphonanae	٧.		100,000,000	000'000'001		158 U	144 U	166 U	155 U	175 JQ	136 U
de la compositional de la	٧.	. 000	000,000,000			158 U	144 03	166 U	155 U	225 U	136 11
indence 1 2 1 colourant	2 2	8,UXU)UXU	2,000,000	37.0	1,900,000	U 821	144 [1]	D 991	155 U	225 U	136 U
Isothorone	\$ 2		2000	3,000	20,000	158 U	356	1991	155 U	225 U	136 U
Nuchthrifene	V	30,00	470,000	3,200,000	2,600	3	144 U	D 991	155 U	225 U	136 U
Nachthalene 1-nethyl.	\$ *	an'ar	MM,cc	M'M'	38,000	0 861	144 0	n 991	ISS U	188 JQ	136 U
Naphthalene, 2-methyl-	Ž					03 60		0.001	חינו	125 JQ	136 U
Phenanthene	Y.			-		01 101		0 001	26.50	21.5	Dr 1.c/
Pyrene	٧٧		1.500.000	26,000,000	400 000	01 765	485	1 791	250	Of Car	130 0
Reiene	¥X					297	1771	2 39	337	75.	0 001
Alaska Metbods (mg/kg)					· · · · · · · · · · · · · · · · · · ·	4	1.20 M	3 20 20 20 20 20 20 20 20 20 20 20 20 20			130 0
lotucisc	٧٧	880	520	520			0.046 U	0 00 U	i	0.004	0.064
n.p. Xylenes	ž	320	210	017	69	0.11 U	0.092 U	01.0	0 095 U	013.0	0.11
· Aylene	V.	320	280	280	69	0.053.U	U 046 U	0.05 U	0 048 U	0.064 1.1	0.045 1.0
:RO	¥			٠	260	2.6 U	2.3 U	2.5 U	3.5	3.2 U	22.0
DRO (nC10~mC25)	ž			•	230	230	21,000	170	3.700	880	140
RRO (IIC25-IIC36)											

Decoration Bigging B						Tabl	Table 3-11					
HeCol.SS				SURF	ACE SOIL SA	FAA HANG/ MPLES ANA NNETTE ISI	AR FACILITY LYTICAL RESU AND, ALASKA	JLTS SUMMAI	κ			
Page 14/17 Cleanup Residential Soil Investorial Cleanup Page 14/17 Cleanup Pa	TART Sample 1D		MIC Soil	EPA Preson 9	EPA Design 0	Alaska Soil	HB03SS	HB04SS	HB05SS	HC01SS	HC02SS	SS10CH
Background Background Bolic Building Bolic Buildi	PA Sample ID	98234373	Cleanup	Residential Soil	Industrial Soil	Cleanup Levels*	98234390	98234391	98234367	98234396 Concerte	98234397 Concrete	98234400
1,2,200 1,5,000 100,000 1,5,000 1,1,590 1,1,190 1,1,	Sample Location	Background		2	OW.		Boiler Building	Boiler Building	Boiler Building	Foundation	Foundation	Mo-gas Station
18.00 18.00 19.000 19.	inorganics (mg/kg)		ζ.				*		1,	一次は 一日本		
1,000, 10,000 1,00	Almannin	28,200		75,000	100,000			7,110	06€'9	٧×	٧X	9,860
1.0 1.0	Areme	5.07		86:0	3	8.1	27.5	s	2.69	٧×	٧X	60.7
1.00 1.00	tanna	79.2		5,200	000'001	685	11.3	31.6	54.1	٧×	٧×	41.2
12 12 12 12 13 13 13 13	lerythium	0.38		150	3,400	38	97.46	0.22	6.17	٧X	۲×	0.27
1340 1340 1340 1340 1340 1340 1340 1340 1344 1444 1444 14444 14444 14444 14444 14444 14444 1444444 144444 144444 144444 1444444 1444444 1444444 1444444 144444 1444444 144444444	:dnium	020		ιε	016	4.5	2.23	0.45 UJ	1.1	NA	٧×	0.94 UJ
18.9 18.9 210 2500 25 174 25.4 46 NA 1.24 1	Jakaum	1740		•	•	•	5,910	3,200	7,660	٧×	V.	2,390
1146 1154 1150 11500 11500 1150 1150 11500 1	Тимпин	18.9		. 210	450	23	174	75.4	97	NA	٧V	81.3
188 188 1800 18	. whatt	12.6		3,300	29,000		45	9'91	81	٧٧	٧×	1.97
1,000 1,00	ıəddo	108		2,800	000'07		329	28.5	6.97	٧٧	₹Z	30.2
1,000 1,00	ни	30,400	•	22,000	100,000		150,000	17,600	22,900	٧٧	٧N	31,700
10,400 10,400 1.0	proxi	2.95	1,000		1,000	400	364	20.4	153 J	٧٧	٧N	93.8
1,000 1,00	Magnesium	10,400	,	•			006'15	26,400	28,500	NA	٧V	82,200
4 0.6778 1.500 37,000 78 251 100 114 NA 1.50 NA 1.500 11,500 137,000 78 251 100 114 NA 1.60 114 NA 1.60 114 NA 1.60 114 NA 1.60 1.60 114 NA 1.60 1.60 1.60 114 NA 1.60	Manganese	7.1.7		3,100	45,000	•	0/0'1	L)T	286	YN	٧N	519
1,500 37,000 37,000 331 944 878 NA	Mercury	0.0578	•	22	095		0.352	0.02 U	1.25	٧N	NA	0.0208
1,0440 3,0440	Nickel	9.21	•	1,500	37,000	78	152	901	114	٧N	٧V	358
6.62 370 9,400 1.6 0.75 U 0.03 U NA 1.49 13,000 3,050 23.9 23.7 17.5 NA 1.6 NA NA	Potassium	3,040		•	•	•	331	964	878	NA	NA	77.5
150 149 150 116 150 116 NA	Selenium	0.82		370	9,400	3	1.8	0.75 U	030	٧N	٧V	0.75 U
96.2 2.00 13.000 3.050 23.9 22.7 17.5 NA	Susham	349	•	•			150	314	159	NA	NA	281
39.8 22,000 100,000 8,100 3,016 93.5 893 NA	Variation	96.2	•	520	13,000	3,050		12.7	17.5	٧V	٧V	24.6
NA 1,600 12,000 3,000 16 U 18 U 17 U 16 U 16 U 16 U 18 U 17 U 16 U	7лис	39.8		22,000	100,000	8,100		93.5	893	٧٧	٧N	102
NA - 1,600 12,000 3,000 1.6 U 18 U 1.7 U 1.6 U NA - 2,400 19,000 42,000 4.6 22 U 22 U 67 U NA - 1,700 13,000 13,000 15 90 U 33 U 31 U NA - 1,700 13,000 13,000 15 90 U 25 U 31 U NA - 1,700 1,300 1,000 32 U 29 U 33 U 79 NA - 90 1,300 1,000 32 U 240 33 U 46 NA - 1,00 1,300 1,000 1,000 12,000 1,000 1,000	Pest/PCBs (µg/kg)	金属的 人名			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· 東京の はないできる		THE STATE OF THE S	大人多度。2.1.42 型	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NA 2,400 19,000 42,000 4,6 22 U 22 U 67 U NA 1,700 13,000 130,000 13,00 13,00 13,00 13,1U 33 U 34 U 79 10 70 10 70 10 70 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Ganuna-Chlordane	1	ŀ			3,000	U 9:1	0.81	0.6.1	U 0.1	53.0	140
NA 1,700 13,000 130,000 13.1 3.1 U 3.1 U 3.1 U NA 1,700 13,000 80,000 15 90 U 25 U 3.1 U NA 200 1,300 1,000 3.2 U 29 U 3.3 U 79 NA 970 18,000 1,000 3.2 U 240 3.3 U 46 NA 200 1,300 1,000 220 12,000 1,300 42	P.P. DDD	٧×		2,400	000'61	42,000	4.6	22 U	11	0.7 U	450	2.7 U
NA 1,700 13,000 80,000 15 90 tJ 25 tJ 31 tJ NA 200 1,300 1,000 32 tJ 29 tJ 33 tJ 79 NA 970 18,000 1,000 32 tJ 240 33 tJ 46 NA 200 1,300 1,000 220 12,000 1,300 42	P.F. DDE	٧٧	-	1,700	13,000	130,000	3.2 U	5.3 U	3.3 U	3.1.0	4.5 U	27 U
NA - 200 1,300 1,000 32 U 29 U 33 U 79 2 NA - 970 18,000 1,000 32 U 240 33 U 46 NA 310 1,300 1,000 220 1,000 1,000 42	P.P. DOT	٧X		1,700	13,000		15	11 06	25 U	3.1.0	450	2711
NA 970 18,000 1,000 32 U 240 33 U 46 N 46 N 1,000 NA 1,000 1,000 1,000 1,000 42	IX.B-1242	٧٧		200	1,300			29 U	33 U	79	200	27.11
NA 1,300 1,300 220 12,000 1,300 42	ICB-1254	₹Z	ļ.	0.66	18,000			240	33 U	46	8	27.11
	14.H-1260	۲×	·	200	1,300	000.1	220	12,000	1,300	42	45.0	13.11

						Γ				Γ	i	T		Γ	Τ		Ī	Γ	Г	Γ	Γ		Γ	Г	Π							Γ	Γ	Τ	Τ	Τ	T	T	T	7
		111.0485		98234353	Control Tower	3	¥Z	VZ.	٧٧		Ϋ́Z	VZ.	Ϋ́Z	₹Z	٧٧	٧Z	٧×	¥z	٧X	٧×	٧×	٧N	٧X	٧N	٧×	Y.	ž	ž	٧X	¥Z	٧٧	٧٧	11.77	₹Z	VZ.	¥2	2	42	4	VVI
		HF03SS		98234352 Air Teiffe	Control Tower	- 1	×	٧×	٧×			¥X	¥Z	Š	×z	٧×	٧×	٧×	٧×	٧Z	٧×	٧×	٧×	٧×	٧×	ž	٧X	٧×	٧×	٧X	٧X	ž		٧×	YZ.	Ž	¥2	Y	2	, VII
		HF02SS	. 307 0000	98234331 Air Teiffic	Control Tower	日常というないので	Z	٧×	٧×	なるが、ラスを持ち	٧×	٧×	٧×	٧×	ž	ž	٧×	٧×	٧×	٧N	٧N	NA	٧×	٧×	٧×	٧×	٧N	٧N	VN	٧٧	٧٧	٧×	記載のいる。 1 たま	0.085 U	0.17 U	0.085 U	4211	1 700	200	
	1 ARY	HF01SS	03030000	Air Teaffic	Control Tower	"是我们是只是我	ÝZ	٧×	٧٧	经存储分分 电影	٧×	٧×	٧×	٧X	٧×	٧X	٧V	٧X	٧×	NA	NA	NA	٧×	٧×	××	٧¥	NA	٧¥	NA	٧٧	NA	٧V	一、左右, 八十九	0.043 U	0.086 U	0.043 U	2111	26	198	
	FAA HANGAR FACHLITY SURFACE SOH, SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA	HG01SS	08234404	Terminal	Building	· 15/20 沙西市	٧X	٧X	٧V	1.11.12.12.12.12.12.12.12.12.12.12.12.12	٧V	٧X	٧×	٧X	٧V	٧٧	٧V	٧V	٧×	٧V	٧×	٧×	٧×	٧٧	٧٧	٧٧	¥	NA	٧×	NA	NA	NA	The state of the s	260 UJ	S30 UJ	260 UJ	13.000 J	83.000	7 100	,,,,,,
Table 3-11	FAA HANGAR FACILITY AMPLES ANALYTICAL RES ANNETTE ISLAND, ALASKA	HEOISS	08234403	Building	Southeast of	57年以外在中華教育的大学	٧×	٧٧	NA	HOUSE THE STATE OF	٧V	٧٧	٧٧	٧×	٧V	٧٧	٧×	٧V	٧×	٧×	¥			٧V		٧٧	٧×	٧V	٧×	٧×	٧V	٧٧	是27年,1945年,1945年,1945年,1945年,1945年,1945年,1945年	0.046 U	0.046 U	0.046 U	23.0	300	5,	Ž
Ta	FAA IIANG SAMPLES AN ANNETTE IS	A Lucha Cod	Cleaning Length	Cicalinp Levels		-14 mg 1 mg	1,700		•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1,700		3,900,000	5,500	2,400	,	17,000	170,000	350,000	1,100,000	\$50,000	1,200,000	15,000,000	1,900,000	50,000	2,600	38,000	•	•		1,400,000	•	The state of the state	4.8	69	69	760	230	9 700	
	RFACE SOIL	EPA	region 9	PRG		· ·	1,700,000	170,000	•		1,700,000	5,300,000	220,000,000	3,600	360		3,600	36,000	100,000,000	210,000	360,000	000'000'001.	110,000,000	37,000,000	3,600	3,200,000	190,000		٠	,	26,000,000		and the second second second	520	210	280	,			
	SI	EPA	Residential Soil	PRG			480,000	51,000			480,000	270,000	14,000,000	260	56	•	260	2,600	100,000,000	32,000	26,000	100,000,000	5,500,000	2,000,000	\$60	470,000	55,000			•	1,500,000	·	ある著名	520	210	280				
		MIC Soil	Cleanup	Levels	İ	3			·						2		•						•	8,000,000	•		30,000	•		•				880	320	330				
		BG01SS	98234373		Background		¥	٧×	٧×	9774 14 N 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٧×	¥	٧×	¥	٧×	¥Z	٧×	₹	Υ _Z	ž	٧×	٧×	¥	V N	¥Z	VZ.	ž	Ϋ́	¥	Y.	VV	٧V		٧×	٧×	NA	٧V	٧×	×	¥
		START Sample ID	1:PA Sample 1D	•	TOT	-	1.2.4 Trichlarobenzene	Benzene, 1.2.4 trunculyl	p Isapropyliotuene	SVOCs (ug/kg)	1.2.4 Trichlorobenzene	4 Methylphenol	Andracene	Венго(а)ливижене	Испло(а)ругене	Henzu(g,h,i)perylene	Henzold Fluoranthene	Henzolk Muoranthene	Benzoic acid	His (2-ethyllexyl) phihalat	Inysene	Unicityiphihalaic	Den-Butylphthalate	l-luoranthene	Indeno(1,2.3-cd)pyrene	Isophorane	Naphilialene	Naphthalene, I methyl-	Naphthalene, 2-methyl-	Penanthrene	Pyrene	Ketene	Alaska Methods (mg/kg)	Tolucine	un.p.Xylenes	n-Xylene	CIRO	DRO (nC10 <nc25)< td=""><td>RRO (nC25-nC36)</td><td>Key at the end of the table.</td></nc25)<>	RRO (nC25-nC36)	Key at the end of the table.

		IIF04SS	98234353	Air Traffic	Control tower	2,990	3.11	21.9	0110	4.19	926	103	81.3	9.0%	49,700	302 J	168,000	800	0.12	729	170	03.0	8.89	6.02	999		130	27.11	281)	4.411	27 11	85	2112	
		HF03SS	98234352	Air Traffic	Control 10wer	3.870	3.66	1.12	1110	II % II	1,510	59.9	8.65	9.07	38,700	209 J	118,000	633	0.135	484	368	0.3 U	7.76	£1	382	一一では、神経る	1.4 U	2.9 U	2.9 U	29 U	19 62	19 67	37	
		HF02SS	98234351	Air Traffic	Daniel Division	01.7.7	1.3	37.5	0.14	1.5 UJ	086'1	601	67.3	47.6	42,100	I 69 I	135,000	721	0.049	280	429	0.75 U	901	1.61	1,250	ないかっていては地域の大学	1.4 U	2.7 U	2.7 U	2.7 U	27 U	27 U	47	
	MARY	SSIOJII	98234350	Air Traffic		5,590	5.52	87.8	0.16	2.52	2,250	2117	52.2	101	39,200	2,120	109,000	665	0.912	502	895	0.75 U	129	17.8	869		1.4 U	2.9 U	2.9 U	13	79 U	29 U	120	
	FAA HANGAR FACILITY SURFACE SOH, SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA	HG0188	98234404	Terminal		¥	NA	NA	٧V	٧	VV	NA	٧×	٧×	٧×	NA	NA	NA	ΥV	NA	VΥ	٧×	٧V	٧٧	NA	700 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IN 61	3.8 UI	10 8 C	3.8 UJ	ff) 8C	10 8E	18 UI	
Table 3-11	FAA HANGAR FACILITY AMPLES ANALYTICAL RES ANNETTE ISLAND, ALASKA	HEOISS	98234402	Building Courbeast of	- Park . Mess . M.	٧V		٧٧			ž		¥	ž	٧V		NA	٧٧			٧×	٧V				College State Control	1.3 U	2.5 U	2.5 U	2.5 U	25 U		25 U	
Ta	FAA HANG SAMPLES AN ANNETTE B	1. O - 1 1 v	Cleanup Levels*		"是一种"	•	1.8	982	38	4.5	,	23	•		•	400	•		-	78		3		3,050	8,100	THE PARTY OF THE WORLD WAY SEE	3,000	42,000	130,000	80,000	1,000	1,000	1,000	
	IRFACE SOIL	EPA	region 9 Industrial Soil	PRG	Action of the second	100,000	3	100,000	3,400	930		450	29,000	70,000	100,000	1,000	•	45,000	260	37,000		9,400	•	13,000		研以推注中的 2.5%		19,000	13,000	13,000	1,300	18,000	1,300	
	SI	EPA	Residential Soil	PRG	AT SHIPSTON	75,000	0.38	5,200	150	37		210	3,300	2,800	22	400		3,100	22	1,500	•	370	•	520	22,000	Applied Sapples	1,600	2,400	1,700	1,700	200	970	200	
		MIC Soil	Cleanup					·								1.000											·		·				·	
		BC0188	98234373	Background		28,200	5.07	79.2	87.0	0.211	1,740	18.9	12.6	801	30,400	2.95	10,400	222	0.0578	9.21	3,040	0.82	249	% 2	39.8		٧×	¥	Š	Y.	ž	٧×	٧¥	
		START Sample ID	EPA Sample 1D	Sample Location	Inorganics (mg/kg)	Alumanın	Arsenic	Hannin	Heryllunn	- Admini	Calcoun	(homen	obali	ohke	lron	1 cad	Magnesium	Manganese	Mercury	Nickel	Potassium	Selemum	Sodium	Vanadium	Zinc	Pest/PCBs (µg/kg)	Ganuna-Chlordane	P.P.DDD	:KK1:.d'.a	P.P.LMT	14.1545	PCB-1254	PCB-1260	Key at the end of the table

			Table 3-11				
	SURFACE SC	FA JIL SAMI ANN	FAA HANGAR FACILITY SURFACE SOIL SAMPLES ANALYTICAL RESULT'S SUMMARY ANNETTE ISLAND, ALASKA	ACILITY ICAL RESUL' SALASKA	I'S SUMMARY		
START Sample ID	BCOUSS	MIC Soil		EPA		RHIOLSS	HHO2SS
EPA Sample ID	98234373	Cleanup Levels	Resid	Soil	Cleanup Levels	98234356	98234357
Sample Location	Background		rku	PRG		Building	Warchouse
VOCs (ug/kg)		*** (1884);	True att				
1.2.4-Trichlorobenzewe	ΝΑ	٠	480,000	1,700,000	1,700	4.2 U	5.4 U
Benzene, 1,2,4-trimethyl-	YZ :		51,000	170,000		2.1.0	2.7 U
n Isopropylioluciic	¥2					2.1 U	2.7 U
STATE OF STATE							*
1.2.4. Trichlorobenzene	¥Z		480,000	1,700,000	1,700	129 U	143 U
4-Methylphenol	¥		270,000	5,300,000		129 U	143 U
Anthracene	٧×	·	14,000,000	220,000,000	3,900,000	41 JQ	U 641
Beuzo(a)anthracene	NA A	•	260	3,600	5,500	129 U	143 U
Всиго(а)ругенс	٧V	92	56	360	2,400	91 <u>511</u>	U (\$1
Benzo(g,h,1)perylene	٧×		•	٠	•	108 JQ	786 U
Benzolb]Fluoranthene	٧×		260	3,600	17,000	171	N 671
Benzoj kjiluoranthene	٧Z		2,600	36,000	000'01'	63.5 JQ	143 U
Benzoic acid	٧×		100,000,000	100,000,000	350,000	1,290 U	1.430 U
Bis(2-ethylbexyl) phthalate	٧V		32,000	210,000	1,100,000	1,140	111
Chysene	٧×		26,000	360,000	550,000) JQ	143 U
Directhylphthalate	۲ ک		100,000,000	100,000,000	1,200,000	129 U	U 841
Di-n-Butylphilialate	٧٧			110,000,000	15,000,000	130 U	143 U
Fluoranthene	٧×	8,000,000	2,000,000	37,000,000	000'006'1	981	143 U
Indeno(1,2,3-cd)pyrene	٧V		260	3,600	000'05	268	143 U
Іѕорћогоне	¥		470,000	3,200,000	2,600	129 U	143 U
Naphthalene	٧×	30,000	55,000	190,000	38,000	129 U	143 U
Naphthalene, 1-methyl-	٧٧			,	_	129 U	143 U
Naphthalene, 2-methyl-	٧×			•	•	N 671	143 U
Phenauthrenc	NA NA		·	٠		951	U 63 U
Pyrene	Ϋ́	·	1,500,000	26,000,000	1,400,000	891	143 U
Reteine	٧٧		•		٠	N 621	143 U
Alaska Methods (mg/kg)	1000年100日	100	A 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	foliate to a to the		では、 人工を記録している。
Tolucne	٧×	880	820	520	4.8	0.041 U	0.049 U
m.p-Xylenes	٧×	320	210	210	69	O 280 O	Π 660'0
o-Xylene	NA AN	320	280	280	69	0.12	0.049 U
GRO	¥		•	,	360	2.1 U	2.5 U
DRO (nC10- <nc25)< td=""><td>ž</td><td></td><td>•</td><td>•</td><td>230</td><td></td><td>230</td></nc25)<>	ž		•	•	230		230
RRO (nC25-uC36)	ΝΑ		•	•	9,700	950	1,000

Fraight Frai				Table 3-11	=			
Sample II)		SURFACESC	FA JIL SAMI ANN	A HANGAR F LES ANALYT ETTE ISLANI	ACILITY FICAL RESUL D, ALASKA	TS SUMMAR	S a	
Checker Chec	START Sample ID	BCOUSS	MIC Soil	EPA	EPA		SSIOHH	HH02SS
Decision Packground PAC EPA Sample 1D	98234373	Cleanup	Region 9 Residential Soil	Region 9 Industrial Soil	Alaska Soit Cleanup Levets*	98234356	98234357	
12	Sample Location	Background		PRG	PRG		Warehouse	Warehouse
1	Inorganics (mg/kg)				10000		Samulag	Building
1.00	Aluminum	28,200	·	75,000	100,000		8.580	550 8
1,740 1,92 1,500 100,000 982 49.5 49.5 1,1740 1,150 1,500 1,400 1,50	Arsenic	5.07		0.38	3	1.8	15	7.33
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Ranum	79.2	٠	5,200	100,000	982	49.5	43.2
1,740 3,146 3,200 2,146 3,14	nerytham	97.0		150	3,400	38	0.25	0.2
1,740	Cadmum	0.2 U	•	37	026	4.5	3.48	3.86
12.6 12.6 21.00 22.000 26.5 5.5 1.000 22.	alcum.	1,740			•		3,230	2,740
12.6 3.300 29,000 26.5 5.5 30,400 22,000 10,000 13,1840 40, 21,100 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 10,000 400 400 10,000 400 400 40,000 40	Livonam	18.9	·	210	450	23	80.4	119
108 2.800 70,000 75.4 4 40, 2.900 22,000 100,000 31,800 40, 31,1 1 10,400 2.95 1,000 400 1,000 40, 31,1 1 10,400 40, 31,1 1 10,400 40, 31,1 1 1,500 41,000 41,000 42,400 1,500 40,3 1 1,500 40,3 1 1,500 40,3 1 1,500 40,3 1 1,500 40,3 1 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 40,3 1,500 1,500 40,3 1,500	00211	12.6		3,300	29,000	•	26.5	53.2
10,400 1,000 1,000 1,000 1,1,000 1	obber	108		2.800	70,000		75.4	43.2
10,000 1,000 1,000 1,000 311 J 1,000 1,0	Iron	30,400		22,000	100,000		31,800	40.500
10,400	pe y	2.95	000.	400	000'1	004	311.5	316.1
SE 272 3,100 45,000 355 6 0.0578 22 560 1 0.801 0.1 1 3,440 1,500 37,000 78 219 5 1 0.82 370 9,400 7 219 5 1 2,49 370 13,000 3,03 40,3 2 1 96.2 250 13,000 3,050 40,3 2 2 1 1,000 12,000 3,050 40,3 2 2 1 1,000 12,000 13,00 13,0 13,0 3 1 1,000 13,000 130,00 26,0 1 4 NA 1,700 13,000 10,000 26,1 2 4 NA 200 1,300 1,000 26,1 2 4 NA 200 1,300 1,000 26,0 2 4 NA 200	Magnesium	10,400					55,400	106.000
10 column 1,500 37,000 78 219 0.0 1,500 37,000 78 219 0.0 1,500 37,000 37,000 37,000 1,500 37,000 37,000 37,000 1,500 37,000 37,000 37,000 1,500 37,000 37,000 37,000 1,500 37,000 37,000 37,000 1,500 3,000 3,000 3,000 1,500 3,000 3,000 1,500 3,000 3,000 1,500 3,000 3,000 1,500 3,000 3,000 1,500 3,000 3,000 1,500 3,000	Manganese	272		3,100	45,000		355	622
3,040 3,000 37,000 78 219 1,500	Mercury	0.0578		12	095	-	0.801	0.127
1,040 1,04	Nickel	9.21	·	1,500	37,000	78	219	452
1,82	r'Orassium	3,040				•	851	865
96.2 520 13,000 3,050 40.3 2 Mordane NA 1,600 13,000 1,300 1,30 40.3 2 Mordane NA 1,600 12,000 3,000 1,3 U 49.9 NA 1,700 13,000 13,000 24,000 7.4 7.4 NA 1,700 13,000 130,000 57 7. NA 200 1,300 1,000 56 U 7. NA 970 18,000 1,000 66 7. NA 200 1,300 1,000 26 U 7. NA 970 18,000 1,000 66 7. NA 200 1,300 1,000 26 U 270	Security	0.82		370	9,400	J	0.3.11	030
1,000 1,00	Notice of the second	647			,		210	188
Continue		70.7		520	13,000	3,050	40.3	22.4
NA 1,600 12,000 13,000	Pest/PC'Rs (us/ks)	39.8		22,000	100,000	8.100	499	585
NA 1,000 12,000 13,00	Gamma Chlordana				1.184		4	
NA . 2,400 19,000 42,000 7.4	00000	٧٢.		009'	12,000	3,000	1.3 U	52 U
NA 1,700 13,000 136,000 2.6 U	200. 7	٧٢.		2.400	000'61	42,000	7.4	חוו
NA : 1,700 13,000 80,000 57 NA : 200 1,300 1,000 26 11 NA : 970 18,000 1,000 66 NA : 200 1,300 1,000 257	7,7 -ODE	٧×		1,700	13,000	130,000	2.6 U	U 71
NA : 200 1,300 1,000 26.1) NA : 970 18,000 1,000 66 32.0 NA : 200 1,300 1,000 270 22.0	r.r. DDI	٧×		1.700	13,000	80,000	57	280 U
NA : 970 18,000 1,000 66 32, NA : 200 1,300 1,000 270 23,0	TCB-1242	¥2		200	1,300	1,000	136 (1)	29 U
200 1,300 1,000 22	47.B-1254	Y.		970	18,000	000'1	99	200
	I-CB-1260	٧٧	·	200	1,300	000'1	270	22,000

- 3-71

The most conservative applicable level was used. In this case, the migration to groundwater standard in the over 40 inch rainfall zone.

Bold type indicates concentrations above sample quantitation limits or detection limits.

Underline indicates concentrations above a comparison standard.

Note

Key

 Dichlorodiphenyldichloroethane. â

= Dichlorodiphenyldichloroethylene.

= Dichlorodiphenyltrichloroethane.

= Diesel range organics.

DRO

FAA EPA

DDE DDT

= Environmental Protection Agency. = Federal Aviation Administration.

= High bias.

= The analyte was positively identified. The associated numerical result is an estimate.

= Unknown bias.

= Low hias.

= Milligrams per kilogram.

= Metlakatla Indian Community.

mg/kg MIC

= Not analyzed.

× Z

= Pesticides and potychlorinated biphenyls. Pesi/PC'Bs

PRG R K K C

= Preliminary remedial goal.

= The result is estimated because it is below the Contract Required Detection Limit.

= Residual range organics.

= Superfund Technical Assessment and Response Team (EPA).

START SVOCs

= The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit. = Semivolatile organic compounds.

= Micrograms per kilogram.

= Volatile organic compounds. µg/kg VOX's

FAA HANGAR FACILITY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA

					ANNETLE	ANNETTE ISLAND, ALASKA	SKA					
START Sample ID	BGOLSB					HA01SB	HA02SB	HA03SB	HBOIGB	HROZER	прозев	datedil
EPA Sample 11)	9K274774	MIC Soil	EPA	EPA						00000	gecaun	gerout
		Cleanup Levels	Residential Soil PRG	negion 9 Industrial Soil PRG	Cleanup Levels	98234384	98234385	98234386	98234392	98234393	98234304	98534305
Sample Location	Background					Hanear Buildine	Hangar Building	Hangar Building	Doiles Duilding		3	:
VOCs (µg/kg)						-100 At 12 A	Military in Street	Timing in a	Donci Duriding	Bolici Billiding	Boiler Building	Sorier Building
2-Butanone	NA	·		-		٧×	٧×	٧×	26.6 UJK	\$\$7.11IK	XIII 392	MIII F MC
Acetone	٧×		1,400,000	6,100,000	000'6	٧×	. AN	NA	107 UJK	223 UJK	106 6 UJK	154 R
11cnzene	٧×	00+	620	1.400	07	٧V	¥Z.	٧×	2.7 U	5.6 U	27.11	38 111K
Benzene, 1.2.4-trimethyl-	ž		21,000	170,000		٧V	٧×	۸×	2.7 U	496 J	2.7 UJK	38111K
ssenzene, 1,3,5-tramethyl-	Y.		21.000	70,000		٧٧	NA	٧×	27.0	365	2.7 UJK	3.8 111K
tanymensene	ď.	230,000	230,000	230,000	2,000	٧٧	NA	٧×	27 U	5.6 U	27.0	38 111K
sopropylbenzene	¥.		120,000	490,000		NA	NA	۸×	2.7 U	S.6 U	2.7 UJK	3.8 tijK
m.p-Ayiene	YZ.	320,000	210,000	210,000	000'69	٧٧	NA	¥X	2.7 U	16.5	27.0	3.8 UJK
A paraiene	٧×	30,000	25,000	190,000	38,000	٧V	٧V	٧V	5.3 UJK	332 JI.	5.3 UJK	7.7 UJK
a Dallylocuzene	٧×		130,000	550,000		٧×	NA	٧V	2.7 U	316	2.7 UJK	3 8 UJK
n-rapyrocazene	×		130,000	550,000	•	VA	NA	٧V	2.7 U	5.6 U	2.7 UJK	3.8.1.11K
u-A yene	٧×	320,000	280,000	280,000	000'69	٧V	٧٧	¥	2.7 U	10.9	27.0	3.8 UJK
P-Isopropylichucine	٧×	٠			•	NA	٧N	¥Z	2.7 U	83.2	2.7 UJK	3.8 LUK
sec-Butylhenzene	٧×		100,000	410,000	•	٧٧	٧X	۸×	2.7 U	5.6 U	2.7 UJK	3.8.111.K
lotuene	NA	880,000	\$20,000	520,000	4,800	٧×	₹Z	٧×	2.7 U	5.6 U	27.0	38 LUK
SVOCs (µg/kg)			。"我 就是这 家人们是一个"	08.500 B. B. B. J.	2. 单数to H3 /	整治	1944年できまがある	本 でんているのではないか	13	11 .		
4-Methylphenol	٧X	٠	270,000	\$30,000		ž		-	150 1		11 751	11 100
MI-Fluorene	٧Z	·	1,800,000	22,000,000	240,000	ΑN	٧×	ž	150 U	1 065 6	11 951	11 702
Anthracene	٧×		14,000,000	220,000,000	3,900,000	٧×	٧×	¥X	150 U	148 (1)	17 951	11 702
Henring acid	٧Z	·	100,000,000	100,000,000	350,000	٧٧	××	٧×	1,500 U	1.480 U	1 560 1	1.910 10
Bis(2-cthythexyl) phihalac	٧×		32,000	210,000	1,100,000	NA	VV	٧×	751 U	742 1)	781 U	1020 U
Abenzoluran	٧×		210,000	3,200,000		NA	٧٧	٧×	150 U	148 U	156 11	304 11
U-n-Bulyiphinalaic	٧ ۲		5,500,000	110.000.000	1,500,000	Y Z	¥	٧N	150 U	148 UJ	156 13	204 ()
radianthene	¥	8,000,000	2,000,000	37,000,000	1,900,000	٧×	¥	NA	150 U	148 UJ	S9.7 JQ	204 (1
September 1	٧×		470,000	3,200,000	2,600	٧×	٧V	٧,	150 U	148 U	862	204 ()
Nachthalene Location	٧ <u>٧</u>	000'01	35,000	000'061	38,000	٧×	¥X	٧٧	130 U	148 U	136 1	204 (1
Nachthalene Jameshall	4			•		٧×	YZ.	ΥV	130 U	22,300 J	156 U	204 ()
Phenanthrene	2			•		٧×	¥	٧٧	150 U	18,100 J	63.7 JQ	204 []
Pyrene	5 2					Y.V	YY.	٧٧	150 U	7,350 J	354	204 []
Reicoe	٧ <u>٠</u>		000,000	76,000,000	1,400,000	¥	¥	٧×	44.3 JQ	148 U	156 U	204 U
A section of the sect	ζ.					٧٧	NA	٧V	150 U	148 U	U 981	331
Aister Methods (mg/kg)					· 一个一个一个	A STATE OF STREET		137 J. King a. C.	THE STATE OF THE STATE OF			
1 Olucine	¥Z.	<u>8</u>	220	520	4.8	A'A	NA	٧٧	0.049 U	0.029 U	0.047 U	0.056 U
CHI JIK II COK	Y.	230	230	230	2	۸A	NA	٧×	0.049 U	0.042	0.047 U	0 056 ()
m.pAyrenes	YZ.	320	210	210	69	٧×	NA	٧٧	0.098 U	860.0	0.094 U	11110
D-Ayleik CBO	¥Z.	2	280	280	69	V.	٧V	٧٧	0.049 U	0 029 U	0.047 11	0.056 U
ORO	VZ.		1		360	٧×	٧٧	٧×	2.4 U	8.1	2.3 U	280
RRO (nC25-nC36)	₹ ₹				230	V.	¥	٧¥	45	15,000	5.30	3,200
Key at the end of the table	٧,١		T		002.6	NA	۸A	٧٧	07-1	520	380	3,800
W. I												

FAA HANGAR FACILITY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA

							1					
START Sample ID	BCOISB		Š	Č		HA01SB	HA02SB	HA03SB	HBOISB	HB02SB	HB03SB	HB04SB
EPA Sample II)	98234374	MIC Soil Cleanup Levels	EPA Region 9 Residential Soil PRG	EPA Region 9 Industrial Soil PRG	Alaska Soil Cleanup Levels ^a	98234384	98234385	98234386	98234392	98234393	98234394	98234395
Sample Location	Background		,	-		Hangar Building	Hangar Building Hangar Building		Boiler Building	Boiler Building	Boiler Building	Boiler Building
Inorganics (mg/kg)		1 2			は、漢で、なる時代	A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	三年十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二			7 7 7 7 4 2 2 2	11	
Aluminum	25,100		75,000	100,000	•	1	5,880	—	5,350	086'9	8,030	13,400
Arsenic	2.6	•	0.38	3	8.1	2.46	1.5	0.3	1.4	0.93	20.7	
Rarium	62.2		5,200	100,000	982	74.1	37.9	41.5	35.7	22.8	68.2	10.7
Beryllium	7.0		150	3,400	38	0.31	0.15	61.0	0.19	0.18	0.21	0.24
(admium	0.2.0		37	930	4.5	1) I/O	2.2	0.2 U	0.42	0.38 UJ	1.81 (1)	0211
Calcium	1,590		•		•	3,450	8,270	3,900	7,600	2,508	3,900	1,070
Сһготіит	12.6		210	450	23	\$4.3	39.8	129	11.1	191	213	11
Cobalt	12.7	•	3,300	29,000	•	36.5	17.6	1.77	5.02	78.6	52.9	89.5
Соррег	89.8	•	2,800	000'07		44.9	14.2	14.4	12.3	18.8	491	9.19
Iron	27,800		22,000	100,000		30,900	14,900	42,600	8,820	41,800	200,000	12,900
i ead	3.01	1,000	400	1,000	400	45.5	24.8	7.3	5.8	35.2	188	18.6
Magnesium	8,880		•			61,200	30,300	143,000	6,070	142,000	70,900	0,9,6
Mangaricyc	351		3,100	45,000	•	505	228	708	123	699	856	154
Mercury	0.0673	•	22	560	1.24	0.0272	0.02 U	0.02 U	0.02 U	0.0495	0.264	0.0572
Nickel	7.41		1,500	37,000	78	260	148	619	29.1	521	333	30.9
Potassium	2,2.70				•	2,100	677	377	702	219	330	1,030
Selenium	0.75 U	•	370	9,400	3	0.75 U	0.3 U	0.3 U	0.19	0.75 U	2.6	
Sodium	242	•	٠			227	226	149	230	611	591	113
Vanadium	91.4	•	220	13,000	3,050	32.2	15.4	16	17.4	11.3	ff1 68 ⁻ 6	31.6
Zinc	33.5	•	22,000	100,000	8,100	374	45.8	42	33.6	6.7.9	1,340	31.1
Pest/PCBs (µg/kg)	100	11.65 1.75 A	() () () () () () () () () () () () () (The open to see that the	2 . 4 . 5 5	のない。本語ではおいている。	. 医生物经有限的异常	2. 第二年本の選の人の課人	1000年代第一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二			
P.P.DDD	٧N		2,400	000'61	42,000	4.8 U	4.3	2.9 U		3.0	3.1.0	4.1.0
P.P.DDT	ΝA		1,700	13,000	000'08	25 U	15	2.9 U	3.0	3.0	11	4 1 13
PCB-1242	٧N	,	200	1,300	000'1	28 U	18 11	19 62	30 U	30 U	31.0	= 17
PCB-1254	٧×	•	970	18,000	000'1	28 U	28 U	19 (1	30 U	30 U	31.0	41.0
PCB-1260	٧V	•	200	1,300	1,000	1,900 U	18 (1)	29 (1	30 U	30 U	140	200
Key at the end of the table												

FAA HANGAR FACILITY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA

							A3NA					
START Sample ID	BC:01SB		á			нвоѕѕв	HC01SB	HC02SB	HD01SB	HEOLSB	HG01SB	9510.41
EPA Sample 11)	98234374	MIC Soil	El'A Region 9	EPA Region 9	Alaska Soil	89171686	90171C80	06234300	.0771000			
		Cleanup	Residential Soil	Industrial Soil	Cleanup Levels*	20000000	Concrete	Concrete	98234401	98234403	98234405	98234354
		SIDA Y I	PRG	PRG			Foundation	Foundation		Building		
Sample Lycation	Backeround						Southwest of	Southwest of		Southeast of	Terminal	Au Traffic
VOCs (µg/kg)			10 to 0.00 to	10000000000000000000000000000000000000	140 C.	boller building	Hangar	Hangar	Mo-gas Station	Hangar	Building	Control Tower
2-Butanone	AN							Section 1	The state of the s			
Acetone	¥2		1 400 000	. 100 000		23.2 UJK	46.2 UJK	65.8 UJK	29.6 UJK	¥	٧٧	NA
Benzene	×	1 400		0,110,000	000'6	92.8 UJK	185 UJK	2,280 JH	118 UJK	NA	٧٧	V.V.
Benzeite, 1,2,4-trinethyl-	ź		15	000 021	0.7	23.0	4.6 U	13.5	3.0	٧¥	٧×	NA
Benzeite, 1,3,5 trinethyl-	Ž		00010	00000		23.0	33,800	4,440	3.0	NA NA	٧Z	۷ ۲
Fihylkencene	× Z	מאט מבנ	ľ	(AN),O/		231)	16,200	1,590	3.1)	٧٧	٧X	۲ ۲
Isononlikaseur	2	7.10,000		000'067	2,000	23 (1	461)	1,3700	3.0	٧٧	NA	٧Z
m n- X vlene	42	000 000		490,000		23 U	63.8	מע	3.0	٧V	٧Z	۲×
Violetologia	42	3.20,000		210,000	000'69	23 U	2,680	56,400	3.0	٧×	٧×	×Z
o O	NA	30,000		190,000	38,000	4.6 UJK	65.2 JL	1,680 JL	S.9 UJL	٧×	٧×	٧×
al-Dutytisenzene	YZ :		130,000	\$50,000	-	2.3 U	6,880	069	3.0	٧×	AN	¥Z.
n-rapylbenzene	YZ :			\$50,000	•	2.3 U	69.2	ſ 99Þ	3.0	٧X	AN	٧V
o Ayrene	VV	320,000	280,000	280,000	000'69	2.3 U	1,780	10,500	3.0	٧×	٧Z	V.V.
r-toop opynamene	٧	•			-	23 U	3,400	165	3.0	٧×	٧X	¥Z
sec-bulytoenzene	V.		000'001	410,000	•	2.3 U	1,230	120	3.0	٧×	\Z	NA VA
I CHICKE	۷۷	000'088	\$20,000	\$20,000	4,800	2.3 U	6	331	3.0	Š	VX.	×
NVOC3 (HEVE)			Jack 1987 - 1997	化学的工作	rom (Marie et l'ex	THEY BE THE	THE STATE	を表現の場合・過ぎを入ったという。 はまなしゃ	学会を持ている。 でからず			
4-Methylpheaol	¥	-	270,000	530,000	•	147 U	140 U	380	140 []	٧Z	ΑN	11 77 1
9H-Fluorene	٧×		1,800,000	22,000,000	240,000	147 U	4,660 J	Of 801	140 U	¥N	Y Z	1190
Anthacene	Y.		14,000,000	220,000,000	3,900,000	147 U	140 UJ	43.6 JO	140 U	V.	₹Z	11 921
Benzoic acid	¥Z		100,000,000	100,000,000	350,000	1,470 U	1,400 U	1,760 U	1,400 U	VZ.	¥Z	11.098
His (2-ethythexyt) phthalate	Y.		32,000	210,000	1,100,000	734 U	11, 078,1	826 JQ	N 669	ž	YZ.	01 965
Dibenzofuran	۷×		210,000	3,200,000	•	147 U	1,680 J	176 11	140 U	Ž	×	7 9.1
1 N-m-Hutylphthalate	٧×	•	5.500,000	110,000,000	1,500,000	1,070	140 (1)	176 U	140 U	٧×	ź	1 36 11
Thoranheire	¥	8.000,000	2,000,000	37,000,000	1,900,000	147 U	140 UJ	114 JQ	140 U	٧×	×Z	136 1
Isophorone	V.			3,200,000	2,600	147 U	140 U	U 9/L1	140 U	٧٧	٧×	136 U
Asplinatone	××	30,000	55,000	190,000	38,000	147 U	11,300 J	1,440	140 U	٧X	٧×	136 13
Naphhalene, 1-methyl-	٧×			•		147 U	52,600 J	069'1	140 U	۸×	٧X	136 11
Naphitalene, 2-methyl-	¥Z.			•		147 U	68,300 J	3,580	140 U	٧X	٧×	136 U
i nemannu ene	Y X					147 U	f 056'9	281	140 U	٧×	٧×	136 U
r yielke Deserte	¥		1,500,000	26,000,000	1.400,000	147 U	455 J	961	140 U	NA	٧V	136 U
Acte Re	NA				٠	147 U	715 J	. N 921	140 U	٧٧	٧Z	136 U
Alaska Methods (mg/kg)		;;	7		ではおきる状況	海水水水,一种种水水	1. C.	· 中機便を表す	A STATE OF S			
loluene	NA A	880		520	20.4	0.048 U	0.4	2.9 J	0.052 U	0.028 U	0.24 J	0.025 U
Lihylkenzene	YZ.	230		230	5	0.048 U	0.65	14 J	0.052 U	0.028 11	0.27	0 0 25 11
m.p-Xylenes	NA V	320		210	69	0.096 U	4.2	63 J	0.10	0.056 ()	0.69	0.05 U
x-Xylene	٧×	320	280	280	69	0.048 U	0.67	ſII	0.052 U	0.028 U	0.77 J	0.025 U
GRO	٧٧				260	2.4 U	93	720	8.4	1.4 U	35	13.0
UKU (nC 10-cnC 25)	YZ:	·			230	21	17,000	200	150	210	009'6	13.11
KKU (AL. 23-AL. 36)	٧X	•			9.700	39	2,100	3,100	180	916	170	1,000
Ney in the end of the lane.												

FAA HANGAR FACHJIY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA

					AINING!	AINTELLE ISLAMD, ALASKA	AUNA					
START Sample 1D	BC01SB					HB05SB	HC01SB	HCOZB	HPoten	0310311	10.00	
EDA Completion		MIC Soil	EPA	EPA				2000	gelociii	HEUISIS	HCOLSB	HFOLSIS
on adure v.	98234374	Cleanup	Region 9	Region 9	Alaska Soil	98234368	98234398	98234399	98234401	98234403	98234405	98234354
	•	Levels	Kesidential Soil	Industrial Soil	Cleanup Levels*		Concrete	Concrete				
, .			ואכ	PKC			Foundation	Foundation		Building		
Sample Location	Backeround						Southwest of	Southwest of		Southeast of	Terminal	Air Traffic
Thorsanics (motion)	Direct Property			98		Boiler Building	Hangar	Hangar	Mo-gas Station	Hangar	Building	Control Tower
	25 100					**************************************	建 在15年15年	での概じの動	· · · · · · · · · · · · · · · · · · ·			-
·	001'C7		75,000	100,000	٠	5,940	٧N	ž	11,200	42	412	402.0
an action	7.6	·	0.38	3	89:	1.5	ž	ž	8.1	572	YY I	0,380
or in	62.2		5,200	100,000	286	38.7	٧×	Ž	94	C 2	Y I	7.1
uning race	9.4	•	120.	3,400	38	0.1 U	ΨN	47		4	٧٨	49.9
Y admum	0.2 U	•	LE	066	4.5	1110	V	5	0.24	¥	∀ Z	0.15
Calcium	1,590	•				15.100	₹	2 2	0.29 UJ	٧×	٧×	1.17 111
C bronium	12.6		017	450	23	12.7	42	¥ .	070'5	V.	٧×	2,540
Cobalt	12.7		3,300	29 000		77.5	4	VV.	99	NA	٧×	82.6
Jaklo,	8.68		2.800	70,000		200	4	¥V.	74.9	٧V	٧×	62.9
Iron	27,800		22,000	000 001		19.1	YZ :	Ϋ́Α	29	٧×	NA	9.11.
t ead	3.01	90		000		905,01	Ϋ́	¥	45,000	NA	٧¥	90%,04
Magnesium	8.880			3	204	6.73	YN.	٧×	33.3	NA	Ϋ́	f 011
Manganese	351		3 100			8,060	¥	¥X	148,000	VΑ	¥Z	126,000
Mercury	0.0673		20.5	000		128	ΨV	٧×	777	NA	Ϋ́	654
Nickel	7.41		005 1	32,000	4.	0.035	٧×	¥	0.0234	VN	٧×	0.131
Potassium	2,230	<u> </u>	Parti.	mn'/c	8/	26.2	Y.	٧×	594	٧V	٧N	524
Schenium	0.75 U	ļ.	טבנ	0 400		211	¥×.	٧×	467	٧V	٧V	665
Sodium	242		25	00*'4	7	0.3 C	¥.	¥	0.3 U	٧V	NA	0.75 U
Vanadium	91.4		065	000 51		188	¥.	¥	222	٧X	NA	191
Zinc	33.5	[000 00	000'61	OCO'S	17.7	Ϋ́ν	¥	20.4	¥Z	V.	67.1
Pest/PCBs (ue/ke)			1	om'mi	- 11	8,100 44.8	٧٧	٧×	57.3	VV	٧×	8.68
P.DOD	1		TO STATE OF THE ST		A STATE OF THE STA			THE SHAPE		The state of the s	The second of the second of	
P.OOT	4	•	2,400	19,000	42,000	2.9 U	2.8 U	3.5 U	2.8 U	27 U	29 U	1
500.00	¥Z.		1,700	13,000	80,000	2.9 U	2.8 U	3.5 U	281	27.11	2011	1 9 5
2 p. 1.72	٧×		200	1,300	000'1	29 U	120	35.11	28.1	27.63	25.7	0.67
17 B-1234	Ϋ́		07.6	18,000	1,000	29 U	37	35.11	2 %	27.11	20.65	0.67
IX B : 1260	۸۸		200	1,300	1,000	SS	28.11	35.1	2002	2	0 67	0.67
Key at the end of the table								0.66	O 97	2/ U	Z9 U	9

				Table 3-12				
	SUBS	URFACE	FAA HANGAR FACILITY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA	FAA HANGAR FACILITY SAMPLES ANALYTICAL RI ANNETTE ISLAND, ALASKA	JTY ZAL RESULTS ASKA	SUMMARY		
START Sample 1D	BC01SB					HF02SB	HHOISB	H11025B
I:PA Sample II)	98234374	MIC Soil Cleanup Levels	EPA Region 9 Residential Soil PRG	EPA Region 9 Industrial Soil	Alaska Soil Cleanup Levels²	98234355	98234358	98234359
Sample Location	Backeround			D.		Air Traffic	Warehouse	Warehouse
VOCs (ug/kg)			14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Line Contract	Control Tower	Building	Building
2. Butanone	٧×				man Applica	20 C	27,5	たる 野田 という 通信
Acetone	٧×		1,400,000	6 100 000	0000	¥ 2	29.8 JL	25.7 U
Beazene	٧v.	1,400	620	1.400	00	4 2	Ibs UJK	182 UJK
Benzene, 1,2,4-thmethyl-	٧٧		21,000	170,000		42	0.07	2.6 U
Benzene, 1,3,5-trimethyl-	٧Z		21,000	70,000		V .	0.0.7	7.0 []
tithylbenzene	٧×	230,000	230,000	230,000	5,000	₹Z	2611	196
Sopropylbenzene	٧×			490,000		Ž	1196	007
in.p-Xylenc	٧X	320,000	210,000	210,000	000'69	٧×	2611	0.07
Naphthalene	٧×	30,000	55,000	190,000	38,000	V.	3111 C S	20.07
n-Butythenzene	٧×	٠	130,000	\$50,000		Ž	11 7 6	3.1 UJA
a-Propylbenzene	٧×		130,000	550,000		₹Z	2611	76.11
N-Xylene	¥	320,000	280,000	280,000	000'69	٧X	2.6 U	7 6 11
P-Isopropylloluene	٧×			•		٧X	2.6 U	2611
Sec-Bulylbenzene	¥		100,000	410,000		٧×	26 U	26.11
Lotucac	٧¥	880.000	220,000	\$20,000	4,800	٧×	2611	1196
SVOCs (µg/kg)			J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	語がなる。我心の多く	少上 全国工具沙北西	では多りので、一次の語が		0.7
4-Methylphenol	NA		270,000	530.000		NA.		3
911-Fluorenc	٧N		1.800,000	22.000.000	240 000	2	0.001	132 U
Anthracene	NA		14,000,000	220.000.000	3 900 000	Ž	0 00	132.0
Benzoic acid	NA		100,000,000	100,000,000	350,000	¥2	1300	132.0
His(2-cthylbexyt) phthalate	٧V		32,000	210,000	1.100.000	×	0. 765	1,026,1
Dibenzofuran	NA		210,000	3,200,000		N N	25.00	000
l'N-a-Burylphthalate	NA		5,500,000	110,000,000	1.500.000	₹Z	2 2 2	0.751
f Juoranthene	NA	8,000,000	2,000,000	37,000,000	1.900.000	×Z	1 75.	0.761
Ізорюсоне	٧V	·	470,000	3,200,000	2,600	×Z	1 75.	137.0
Naphthalene	٧¥	30,000	\$5,000	000'061	38,000	ź	11 76.1	
Naphthalene, 1-methyt-	٧×		•			٧×	136 (1	13. 13
Naphthalene, 2-methyl-	٧×		•			٧×	13.61	11 621
Phenauthene	٧×		•			٧×	136 U	13 11
lyrene	¥		1,500,000	26,000,000	1,400,000	٧×	136 11	13 11
Ketene	٧¥	·	-	,		٧×	136 U	132.11
Alaska Methods (mg/kg)	2.5					The second of the second	11 10 F. 1. 100 A.	
Lolucne	٧×	88	520	220	80.7	0 022 U	0.032 11	11 8100
lithythenzene	٧×	230	230	230	5	0.022 11	0 033 11	0.010.0
m.p-Xylenes	¥	320	210	210	69	0.043 (1	11 7000	0 000
v-Xylene	٧×	320	280	280	69	0.022 U	11 600	0.000
CiRO	٧٧	1	·		260	1.1.5	1.6 U	0 8100
DRO (nC10-cnC25)	¥×.			٠	230	٧×	280	47
RRO (nC25-nC36)	Y.	-	•		9.700	٧٧	910	8.
Key at the end of the table								10

		HH02SB	98234359	Warehouse	Building	10 400	3.49	30.4	0.27	0.2 U	3,420	49.5	18.3	30.9	19.500	2.94	069'6	324	0.02 U	35.3	874	0.3 U	111	n	53.7	1.00mm 1.00mm	2.6 U	2.6 U	38 U	26 U	26 U	
		HH01SB	98234358	Warehouse	Building	6.570	2.4	35.2	0.13	0.29 UJ	3,590	61.7	38.4	16.2	25,500	39.2 J	72,600	404	0.029	327	610	0.3 U	172	1.91	56.7	Sant to the sant	2.7 U	27 U	27.0	27 U	38	
	SUMMARY	HF02SB	98234355	Air Traffic	Control Tower	8.730	5.95	6.09	0.25	0.2 U	2,960	12.7	8.16	30.6	16,000	3.43	5,520	181	0.0775	15.2	924	0.36	175	30.6	43.2	· · · · · · · · · · · · · · · · · · ·	2.8 U	2.8 U	28 U	28 U	28 U	
	FAA IIANGAR FACILITY SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTE ISLAND, ALASKA		Alaska Soil Cleanup Levels*	•		-	8:-	982	38	4.5		23	•	•	•	400			1.24	78	•	3		3,050	8,100	all of the personal establishment of the second that	42,000	80,000	1,000	000'1	000'1	
Table 3-12	FAA IIANGAR FACILITY SAMPLES ANALYTICAL RI ANNETTE ISLAND, ALASKA		9 Soil	PRG		100,000	3	100,000	3,400	930		450	29,000	70,000	100,000	1,000		45,000	980	37,000		9.400	,	13,000	100,000	Pel-schieblige	19,000	13,000	1,300	18,000	1,300	
	FAA IIAI OIL SAMPLES ANNETTE		EPA Region 9 Residential Soil	PRG		75,000	0.38	5,200	8	37		210	3,300	2,800	22,000	400		3,100	22	1,500	-	370		220	22,000	J. Bathell Frank	2,400	1,700	200	01.6	200	
	JRFACE S		MIC Soil Cleanup		*			1			•	•				000	·			•				•	•					•		
	SUBSI	BG01SB	98234374	Backeround	Alterial Marie III	25,100	2.6	62.2	0.4	0.7.0	0KC'1	12.6	12.7	8.68	27,800	3.01	8,880	181	0.0675	7.41	2,230	0.73 0	747	91.4	33.5	CARTE CARTER AS	٧×	٧×	٧×	٧×	٧٧	
		START Sample 1D	I.I'A Sample IID	Sample Location	Inorganics (mg/kg)	Aluminum	Arsenic	Name of the second	useryllium (3.denim	Calcing		Will Children	COORT	opper	ITOR	r cad	Magnesium	Manganese	wereury	TAICKE!	rozssiem	Codina	South	Vanadium	Z10C	Pest/PCBs (ug/kg)	T.Y. DOU	1.7001	IX B-1242	FCB-1254	HX'B-1260	Key at the end of the table.

The most conservative applicable level was used. In this case, the migration to groundwater standard in the over 40 inch rainfall zone.

Bold type indicates concentrations above sample quantitation limits or detection limits. Underline indicates concentrations above a comparison standard.

Key

Note

= Dichlorodiphenyldichloroethane. DEST

= Dichlorodiphenyltrichloroethane. SKO

= Diesel range organics.

EPA

FAA

= Environmental Protection Agency.

= Federal Aviation Administration.

= High bias.

= Identification.

= The analyte was positively identified. The associated numerical result is an estimate.

= Unknown bias.

= Low bias.

mg/kg

= Milligrams per kilogram. = Metlakatla Indian Community.

MIC

۲

= Not analyzed.

= Pesticides and polychlorinated biphenyls. Pest/PCBs

= Preliminary remedial goal.

PRG

= The result is estimated because it is below the Contract Required Detection Limit.

= Rejected.

= Residual range organics.

= Superfund Technical Assessment and Response Team (EPA). = Semivolatile organic compounds.

= The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit. START

= Micrograms per kilogram. = Volatile organic compounds. HE/KB V(X'S

SVOC'S

REC

FAA HANGAR FACILITY SEDIMENT SAMPLES ANALYTICAL RESULTS SUMMARY ANNETTTE ISLAND, ALASKA

		TIL ISLAND.	ALASINA	
START Sample ID	BG02SD	Washington	Ecological	HA04SD
EPA Sample ID	98234375	Sediment	Screening	98234387
Sample Location	Background	Values*	Benchmark ^b	Hangar Buildin
Inorganics (mg/kg)	e francis			rialga bandin
Aluminum	11,800	-	•	7,950
Arsenic	0.41	57	8.2	14.4
Barium	9.54	-	-	42.4
Beryllium	0.17	•	•	0.24
Cadmium	0.2 U	5.1	1.2	3.66
Calcium	818			2,220
Chromium	6.37	260	81	106
Cobalt	1.8			58.5
Copper	13.3	390	34	58.4
Iron	2,930	-	•	42,000
Lead	3.65	450	. 47	263
Magnesium	1,710	•	•	108,000
Manganese	35.2	-	460	606
Mercury	0.0793	0.41	0.15	0.361
Vickel	3.3		21	462
Potassium	110			509
Sodium	83.1			142
/anadium	19.8	-	•	22.3
line	7.46	410	150	1,060
	e a supplication of the		15 (新聞的) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	medical reco
CB-1254	NA	7.3	810	60
CB-1260	NA	21	23	2,000

Sediment Quality Values taken from, Creation and Analysis of Freshwater Sediment Quality Values in Washington State (Cubbage et al. 1997).

Ecological Screening Benchmarks were taken from Oak Ridge National Laboratory's, Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment- Associated Biota: 1997 Revision (Jones et al. 1997).

Note:

Bold type indicates concentrations above sample quantitation limits or detection limits.

Underline indicates concentrations above a comparison standard.

Key:

EPA FAA

= Environmental Protection Agency. = Federal Aviation Administration.

= Identification.

= Milligrams per kilogram. mg/kg

ΝĀ = Not analyzed.

Pest/PCBs = Pesticides and Polychlorinated biphenyls.

START

= Superfund Technical Assessment and Response Team (EPA).

= The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit. μg/kg = Micrograms per kilogram.

FAA HANGAR FACILITY GROUNDWATER SAMPLES ANALYTICAL RESULTS SUMMARY

EPA Sample ID C Sample Location I		BUNCLI	<u>E ISLAND, AI</u>	LASKA		
Sample Location VOCs (µg/L) 2. Butanone Acetone Toluene SVOCs (µg/L) Naphthalene Naphthalene. 1-methyl- Naphthalene. 2-methyl-	MIC undwater leanup	EPA Region 9 Tap Water PRG	EPA Drinking Water Standard		HA04GW	HG05GW
VOCs (µg/L) 2-Butanone Acetone Toluene SVOCs (µg/L) Naphthalene Naphthalene. 1-methyl- Naphthalene. 2-methyl-	Levels	Tap water TKO	(MCL)	Cleanup Levels*	98234364	98234365
2-Butanone Acetone Toluene SVOCs (µg/L) Naphthalene Naphthalene. 1-methyl- Naphthalene, 2-methyl-		<u> </u>			Hanzar Buildin	98234365 Hangar Building
Acetone Toluene SVOCs (µg/L) Naphthalene Naphthalene. 1-methyl- Naphthalene. 2-methyl-	No. 1 6 fee	Si tayları atçıkılık gözü	المعطوم والمستواك أمالك	riegini mana gusta edi.	Control of the State of the Sta	in between the home in the sect of be
Toluene SVOCs (µg/L) Naphthalene Naphthalene, 1-methyl- Naphthalene, 2-methyl-		•	<u> </u>		2 U	7.5
SVOCs (µg/L) Naphthalene Naphthalene, 1-methyl- Naphthalene, 2-methyl-		610	<u> </u>	3,650	4.3 JL	86.8 JL
Naphthalene Naphthalene, 1-methyl- Naphthalene, 2-methyl-	6.800		1,000	1,000	ΙÜ	1.2
Naphthalene, 1-methyl- Naphthalene, 2-methyl-				on the or the interpretation	Contains and section and	द्वानक्ष्याः क्षाप्तव होते
Naphthalene, 2-methyl-		6.2	•	1,460	4.4	0.42 U
				•	29.1	0.42 U
Retene	•		•		44.1	0.42 U
	•	•	•	•	9.6	0.42 U
Alaska Methods (mg/L) 🖘 🚧 👸	ignority and	MANAGE CO.	ot makind this	Company of the second	(1) 1/2 mark (1) 1/2 mg/kg	become and great the same
DRO (nC10- <nc25)< td=""><td></td><td>-</td><td></td><td>1.5</td><td>110</td><td>0.22</td></nc25)<>		-		1.5	110	0.22
Inorganics (µg/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	identification and	and the last of the specific states	Service of the service of	tang lebig sebelah di	Alexander St. P.
Aluminum		37,000	50*		63,600	112
Antimony	•	1.5	6	6	R	1.6 J
Arsenic		0.045	50	50	19.3	1.1
Barium	-	2,600	2,000	2,000	722	33.8
Beryllium	•	73	4	4 .	1.49	0.04 U
Cadmium		18	5	5	3.91	0.045
Calcium					59,400	11,900
Chromium		180	100	100	186	1 U
Cobalt	•	2,200		•	388	1.3
Copper		1,400	1,300	1,300	326	21.9
Iron		11.000			168,000	114
Lead	3.2	4	15	15	172	1.21
Magnesium					253,000	33,300
Manganese		1,700	50*		5,400	35.6
Mercury		11	2	2	0.683	0.2 U
Nickel	•	730	100	100	1,480	9.57
Potassium	-				12,400	2,850
Selenium	-	180	50	50	3	1 0
Silver	-	180	100*	180	0.71	0.034
Sodium					9,000	8,040
Thallium		•				
Vanadium	\vdots	2.9	2	2	0.55	0.5 U
Zine	-	2.9	2	2 260	0.55 148	0.5 U 0.56
Pest/PCBs (µg/L)					148 683	
PCB-1260	-	260 11,000	5,000*	260 11,000	148 683	0.56 10.9

Secondary Maximum Contaminant Level

The groundwater cleanup levels are consistent with or are more conservative than the Alaska Maximum Contaminant Levels (MCLs). Exception to this rule include nickel, silver, and zinc where the MCLs or Secondary MCLs are more conservative than the goundwater cleanup standards.

Bold type indicates concentrations above sample quantitation limits or detection limits. Note:

Underline indicates concentrations above a comparison standard. Key:

DRO

 Diesel range organics.
 Environmental Protection Agency.
 Federal Aviation Administration. EPA FAA

D = Identification.

= The analyte was positively identified. The associated numerical result is an estimate.

L MCL = Low bias.

= Maximum Contaminant Level. mg/L MIC

= Maximum Contaminant Level. = Milligrams per liter. = Metlakatla Indian Community. = Pesticides and polychlorinated hiphenyls. = Preliminary remedial goal. Pest/PCBs PRG

= Rejected.
= Residual range organics. R RRO

START = Supertund Technical Assessment and Response Team (EPA).

= Semivolatile organic compounds.

SVOCs U = The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.

μg/L VOCs = Micrograms per liter. = Volatile organic compounds